Skip to main content
×
×
Home

Acute ingestion of resistant starch reduces food intake in healthy adults

  • Caroline L. Bodinham (a1), Gary S. Frost (a2) and M. Denise Robertson (a1)
Abstract

Resistant starch (RS), a non-viscous dietary fibre, may have postprandial effects on appetite regulation and metabolism, although the exact effects and mechanisms are unknown. An acute randomised, single-blind crossover study, aimed to determine the effects of consumption of 48 g RS on appetite compared to energy and available carbohydrate-matched placebo. Twenty young healthy adult males consumed either 48 g RS or the placebo divided equally between two mixed meals on two separate occasions. Effects on appetite were assessed, using an ad libitum test meal and 24-h diet diaries for energy intake, and using visual analogue scales for subjective measures. Changes to postprandial glucose, insulin and C-peptide were also assessed. There was a significantly lower energy intake following the RS supplement compared to the placebo supplement at both the ad libitum test meal (5241 (sem 313) v. 5606 (sem 345) kJ, P = 0·033) and over the 24 h (12 603 (sem 519) v. 13 949 (sem 755) kJ, P = 0·044). However, there was no associated effect on subjective appetite measures. Postprandial plasma glucose concentrations were not significantly different between supplements, but there was a significantly lower postprandial insulin response following the RS supplement (P = 0·029). The corresponding C-peptide concentrations were not significantly different, although the ratio of C-peptide to insulin was higher following the RS supplement compared to placebo (P = 0·059). These results suggest that consumption of 48 g RS, over a 24-h period, may be useful in the management of the metabolic syndrome and appetite. Further studies are required to determine the exact mechanisms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Acute ingestion of resistant starch reduces food intake in healthy adults
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Acute ingestion of resistant starch reduces food intake in healthy adults
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Acute ingestion of resistant starch reduces food intake in healthy adults
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Margaret Denise Robertson, fax +44 1483 688501, email m.robertson@surrey.ac.uk
References
Hide All
1World Health Organization (WHO) (2000) Nutrition for Health and Development. A Global Agenda for Combating Malnutrition. Geneva: World Health Organization. http://www.who.int/mip2001/files/2231/NHDprogressreport2000.pdf (accessed August 2007).
2Slavin, J & Green, H (2007) Dietary fibre and satiety. Nutr Bull 32, 3242.
3Pereira, MA & Ludwig, DS (2001) Dietary fiber and body-weight regulation. Observations and mechanisms. Pediatr Clin North Am 48, 969980.
4Weickert, MO & Pfeiffer, AF (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138, 439442.
5Champ, MM (2004) Physiological aspects of resistant starch and in vivo measurements. J AOAC Int 87, 749755.
6Robertson, MD, Bickerton, AS, Dennis, AL, et al. (2005) Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82, 559567.
7Brown, IL (2004) Applications and uses of resistant starch. J AOAC Int 87, 727732.
8Nugent, AP (2005) Health properties of resistant starch. Nutr Bull 30, 2754.
9Higgins, JA (2004) Resistant starch: metabolic effects and potential health benefits. J AOAC Int 87, 761768.
10van Strien, T, Frijters, JER, Bergers, GPA, et al. (1986) The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord 52, 295315.
11Flint, A, Raben, A, Blundell, JE, et al. (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24, 3848.
12Weststrate, JA & van Amelsvoort, JM (1993) Effects of the amylose content of breakfast and lunch on postprandial variables in male volunteers. Am J Clin Nutr 58, 180186.
13Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
14Caumo, A, Bergman, RN & Cobelli, C (2000) Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index. J Clin Endocrinol Metab 85, 43964402.
15Schofield, WN, Schofield, C & James, WPT (1985) Basal metabolic rate – review and predicition. Hum Nutr: Clin Nutr 39, 196.
16Raben, A, Tagliabue, A, Christensen, NJ, et al. (1994) Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am J Clin Nutr 60, 544551.
17Mourao, DM, Bressan, J, Campbell, WW, et al. (2007) Effects of food form on appetite and energy intake in lean and obese young adults. Int J Obes (Lond).
18De Roos, N, Heijnen, ML, de Graaf, C, et al. (1995) Resistant starch has little effect on appetite, food intake and insulin secretion of healthy young men. Eur J Clin Nutr 49, 532541.
19van Amelsvoort, JM & Weststrate, JA (1992) Amylose–amylopectin ratio in a meal affects postprandial variables in male volunteers. Am J Clin Nutr 55, 712718.
20Goldberg, GR, Black, AE, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
21Wolever, TM, Schrade, KB, Vogt, JA, et al. (2002) Do colonic short-chain fatty acids contribute to the long-term adaptation of blood lipids in subjects with type 2 diabetes consuming a high-fiber diet? Am J Clin Nutr 75, 10231030.
22Macfarlane, S & Macfarlane, GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62, 6772.
23Behall, KM & Howe, JC (1996) Resistant starch as energy. J Am Coll Nutr 15, 248254.
24Cuche, G, Cuber, JC & Malbert, CH (2000) Ileal short-chain fatty acids inhibit gastric motility by a humoral pathway. Am J Physiol Gastrointest Liver Physiol 279, G925G930.
25Cherbut, C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62, 9599.
26Keenan, MJ, Zhou, J, McCutcheon, KL, et al. (2006) Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity 14, 15231534.
27Zhou, J, Hegsted, M, McCutcheon, KL, et al. (2006) Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity (Silver Spring) 14, 683689.
28Zhou, J, Martin, RJ, Tulley, RT, et al. (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295, E1160E1166.
29Topping, DL & Clifton, PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81, 10311064.
30Robertson, MD, Currie, JM, Morgan, LM, et al. (2003) Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia 46, 659665.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed