Skip to main content
×
×
Home

Adipokines: inflammation and the pleiotropic role of white adipose tissue

  • Paul Trayhurn (a1) and I. Stuart Wood (a1)
Abstract

White adipose tissue is now recognised to be a multifunctional organ; in addition to the central role of lipid storage, it has a major endocrine function secreting several hormones, notably leptin and adiponectin, and a diverse range of other protein factors. These various protein signals have been given the collective name ‘adipocytokines’ or ‘adipokines’. However, since most are neither ‘cytokines’ nor ‘cytokine-like’, it is recommended that the term ‘adipokine’ be universally adopted to describe a protein that is secreted from (and synthesised by) adipocytes. It is suggested that the term is restricted to proteins secreted from adipocytes, excluding signals released only by the other cell types (such as macrophages) in adipose tissue. The adipokinome (which together with lipid moieties released, such as fatty acids and prostaglandins, constitute the secretome of fat cells) includes proteins involved in lipid metabolism, insulin sensitivity, the alternative complement system, vascular haemostasis, blood pressure regulation and angiogenesis, as well as the regulation of energy balance. In addition, there is a growing list of adipokines involved in inflammation (TNFα, IL-1β, IL-6, IL-8, IL-10, transforming growth factor-β, nerve growth factor) and the acute-phase response (plasminogen activator inhibitor-1, haptoglobin, serum amyloid A). Production of these proteins by adipose tissue is increased in obesity, and raised circulating levels of several acute-phase proteins and inflammatory cytokines has led to the view that the obese are characterised by a state of chronic low-grade inflammation, and that this links causally to insulin resistance and the metabolic syndrome. It is, however, unclear as to the extent to which adipose tissue contributes quantitatively to the elevated circulating levels of these factors in obesity and whether there is a generalised or local state of inflammation. The parsimonious view is that the increased production of inflammatory cytokines and acute-phase proteins by adipose tissue in obesity relates primarily to localised events within the expanding fat depots. It is suggested that these events reflect hypoxia in parts of the growing adipose tissue mass in advance of angiogenesis, and involve the key controller of the cellular response to hypoxia, the transcription factor hypoxia inducible factor-1.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Adipokines: inflammation and the pleiotropic role of white adipose tissue
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Adipokines: inflammation and the pleiotropic role of white adipose tissue
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Adipokines: inflammation and the pleiotropic role of white adipose tissue
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: fax +44 151 706 5802, Email p.trayhurn@liverpool.ac.uk
References
Hide All
Ahima, RS, Prabakaran, D, Mantzoros, C, Qu, DQ, Lowell, B, Maratos-Flier, E & Flier, JSRole of leptin in the neuroendocrine response to fasting. Nature (1996) 382, 250252.
Alessi, MC & Bastelica, D, Morange, P, Berthet, B, Leduc, I, Verdier, M, Geel, O & Juhan-Vague, IPlasminogen activator inhibitor 1, TGFβ1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes (2000) 49, 13741380.
Ambrosini, G, Nath, AK, Sierra-Honigmann, MR & Flores-Riveros, JTranscriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia-inducible factor 1. J Biol Chem (2002) 277, 3460134609.
Arita, Y, Kihara, S & Ouchi, NParadoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun (1999) 257, 7983.
Bastard, JP, Jardel, C, Bruckert, E, Blondy, P, Capeau, J, Laville, M, Vidal, H & Hainque, BElevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab (2000) 85, 33383342.
Berg, AH, Combs, TP, Du, X, Brownlee, M & Scherer, PEThe adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med (2001) 7, 947953.
Binley, K, Kan, O, White, J & Naylor, SExploiting the hypoxia response. Curr Opin Mol Ther (2003) 5, 650656.
Bruun, JM, Pedersen, SB & Richelsen, BInterleukin-8 production in human adipose tissue. Inhibitory effects of anti-diabetic compounds, the thiazolidinedione ciglitazone and the biguanide metformin. Horm Metab Res (2000) 32, 537541.
Bruun, JM, Pedersen, SB & Richelsen, BRegulation of interleukin 8 production and gene expression in human adipose tissue in vitro. J Clin Endocrinol Metab (2001) 86, 12671273.
Bulló, M, Garcia-Lorda, P, Megias, I & Salas-Salvado, JSystemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obesity Res (2003) 11, 525531.
Chaldakov, GN, Stankulov, IS, Fiore, M, Ghenev, PI & Aloe, LNerve growth factor levels and mast cell distribution in human coronary atherosclerosis. Atherosclerosis (2001) 159, 5766.
Chiellini, C, Bertacca, A & Novelli, SEObesity modulates the expression of haptoglobin in the white adipose tissue via TNFα. J Cell Physiol (2002) 190, 251258.
Chinetti, G, Fruchart, JC & Staels, BPeroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. Int J Obesity (2003) 27, Suppl. 3 S41S45.
Cigolini, M, Tonoli, M & Borgato, LExpression of plasminogen activator inhibitor-1 in human adipose tissue: a role for TNF-α?. Atherosclerosis (1999) 143, 8190.
Claffey, KP, Wilkison, WO & Spiegelman, BMVascular endothelial growth factor. Regulation by cell differentiation and activated second messenger pathways. J Biol Chem (1992) 267, 1631716322.
Cook, KS, Groves, DL, Min, HY & Spiegelman, BMA developmentally regulated mRNA from 3T3 adipocytes encodes a novel serine protease homologue. Proc Natl Acad Sci USA (1985) 82, 64806484.
Cook, KS, Min, HY, Johnson, D, Chaplinsky, RJ, Flier, JS, Hunt, CR & Spiegelman, BMAdipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science (1987) 237, 402405.
Coppack, SWPro-inflammatory cytokines and adipose tissue. Proc Nutr Soc (2001) 60, 349356.
Das, UNIs obesity an inflammatory condition?. Nutrition (2001) 17, 953966.
Dietze, D, Koenen, M, Rohrig, K, Horikoshi, H, Hauner, H & Eckel, JImpairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes (2002) 51, 23692376.
Ehrhart-Bornstein, M, Lamounier-Zepter, V, Schraven, A, Langenbach, J, Willenberg, HS, Barthel, A, Hauner, H, McCann, SM, Scherbaum, WA & Bornstein, SRHuman adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci USA (2003) 100, 1421114216.
Engeli, S, Feldpausch, M, Gorzelniak, K, Hartwig, F, Heintze, U, Janke, J, Mohlig, M, Pfeiffer, AFH, Luft, FC & Sharma, AMAssociation between adiponectin and mediators of inflammation in obese women. Diabetes (2003) 52, 942947.
Engström, G, Hedblad, B, Stavenow, L, Lind, P, Janzon, L & Lindgärde, FInflammation-sensitive plasma proteins are associated with future weight gain. Diabetes (2003) 52, 20972101.
Eriksson, P, Reynisdottir, S, Lonnqvist, F, Stemme, V, Hamsten, A & Arner, PAdipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia (1998) 41, 6571.
Esposito, K, Pontillo, A, Ciotola, M, Di Palo, C, Grella, E, Nicoletti, G & Giugliano, DWeight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab (2002) 87, 38643866.
Esposito, K, Pontillo, A, Giugliano, F, Giugliano, G, Marfella, R, Nicoletti, G & Giugliano, DAssociation of low interleukin-10 levels with the metabolic syndrome in obese women. J Clin Endocrinol Metab (2003) 88, 10551058.
Fain, JN, Bahouth, SW & Madan, AKHaptoglobin release by human adipose tissue in primary culture. J Lipid Res (2004 a) 45, 536542.
Fain, JN, Madan, AK, Hiler, ML, Cheema, P & Bahouth, SWComparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology (2004 b) 145, 22732282.
Festa, A, D'Agostino, R Jr, Williams, K, Karter, AJ, Mayer-Davis, EJ, Tracy, RP & Haffner, SMThe relation of body fat mass and distribution to markers of chronic inflammation. Int J Obesity (2001) 25, 14071415.
Friedrichs, WE, Navarijo-Ashbaugh, AL, Bowman, BH & Yang, FExpression and inflammatory regulation of haptoglobin gene in adipocytes. Biochem Biophys Res Commun (1995) 209, 250256.
Frühbeck, G, Gómez-Ambrosi, J, Muruzabal, FJ & Burrell, MAThe adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol (2001) 280, E827E847.
Funahashi, T, Nakamura, T, Shimomura, I, Maeda, K, Kuriyama, H, Takahashi, M, Arita, Y, Kihara, S & Matsuzawa, YRole of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med (1999) 38, 202206.
Gabay, C & Kushner, IAcute-phase proteins and other systemic responses to inflammation. New Engl J Med (1999) 340, 448454.
Hasan, W, Zhang, R, Liu, M, Warn, JD & Smith, PGCoordinate expression of NGF and alpha-smooth muscle actin mRNA and protein in cutaneous wound tissue of developing and adult rats. Cell Tissue Res (2000) 300, 97109.
Heinrich, PC, Castell, JV & Andus, TInterleukin-6 and the acute phase response. Biochem J (1990) 265, 621636.
Hellwig-Bürgel, T, Rutkowski, K, Metzen, E, Fandrey, J & Jelkmann, WInterleukin-1β and tumor necrosis factor-α stimulate DNA binding of hypoxia-inducible factor-1. Blood (1999) 94, 15611567.
Höpfl, G, Ogunshola, O & Gassmann, MHIFs and tumors - causes and consequences. Am J Physiol (2004) 286, R608R623.
Hotamisligil, GSInflammatory pathways and insulin action. Int J Obesity, (2003) 27, Suppl. 3. S53S55.
Hotamisligil, GS, Shargill, NS & Spiegelman, BMAdipose expression of tumor necrosis factor-alpha - direct role in obesity-linked insulin resistance. Science (1993) 259, 8791.
Hotta, K, Funahashi, T & Arita, YPlasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscl Thromb Vasc Biol (2000) 20, 15951599.
Kersten, S, Mandard, S, Tan, NS, Escher, P, Metzger, D, Chambon, P, Gonzalez, FJ, Desvergne, B & Wahli, WCharacterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem (2000) 275, 2848828493.
Klaus, SAdipose tissue as a regulator of energy balance. Curr Drug Targets (2004) 4, 110.
Kratchmarova, I, Kalume, DE & Blagoev, BA proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics (2002) 1, 213222.
Levi-Montalcini, R, Skaper, SD, Dal Toso, R, Petrelli, L & Leon, ANerve growth factor: from neurotrophin to neurokine. Trends Neurosci (1996) 19, 514520.
Lin, Y, Rajala, MW, Berger, JP, Moller, DE, Barzilai, N & Scherer, PEHyperglycemia-induced production of acute phase reactants in adipose tissue. J Biol Chem (2001) 276, 4207742083.
Lolmede, K, Durand, de, Saint Front, V, Galitzky, J, Lafontan, M & Bouloumie, AEffects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obesity (2003) 27, 11871195.
Lundgren, CH, Brown, SL, Nordt, TK, Sobel, BE & Fujii, SElaboration of type-1 plasminogen activator inhibitor from adipocytes - a potential pathogenetic link between obesity and cardiovascular disease. Circulation (1996) 93, 106110.
Mohamed-Ali, V, Goodrick, S, Rawesh, A, Katz, DR, Miles, JM, Yudkin, JS, Klein, S & Coppack, SWSubcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab (1997) 82, 41964200.
Mohamed-Ali, V, Pinkney, JH & Coppack, SWAdipose tissue as an endocrine and paracrine organ. Int J Obesity (1998) 22, 11451158.
Moller, DE & Berger, JPRole of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obesity (2003) 27, Suppl. 3 S17S21.
Mutch, NJ, Wilson, HM & Booth, NAPlasminogen activator inhibitor-1 and haemostasis in obesity. Proc Nutr Soc (2001) 60, 341347.
Oller, do, Nascimento, C, Hunter, L & Trayhurn, PRegulation of haptoglobin gene expression in 3T3-L1 adipocytes by cytokines, catecholamines, and PPARγ. Biochem Biophys Res Commun (2004) 313, 702708.
Ouchi, N, Kihara, S & Arita, YNovel modulator for endothelial adhesion molecules - adipocyte-derived plasma protein adiponectin. Circulation (1999) 100, 24732476.
Ouchi, N, Kihara, S & Funahashi, TReciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation (2003) 107, 671674.
Pannacciulli, N, Cantatore, FP, Minenna, A, Bellacicco, M, Giorgino, R & De Pergola, GC-reactive protein is independently associated with total body fat, central fat, and insulin resistance in adult women. Int J Obesity (2001) 25, 14161420.
Peeraully, MR, Jenkins, JR & Trayhurn, PNGF gene expression and secretion in white adipose tissue: regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines. Am J Physiol (2004) 287 (In the Press).
Prins, JB, Niesler, CU, Winterford, CM, Bright, NA, Siddle, K, Orahilly, S, Walker, NI & Cameron, DPTumor necrosis factor-alpha induces apoptosis of human adipose cells. Diabetes (1997) 46, 19391944.
Rajala, MW & Scherer, PEMinireview: the adipocyte - at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology (2003) 144, 37653773.
Rayner, DV & Trayhurn, PRegulation of leptin production: sympathetic nervous system interactions. J Mol Med (2001) 79, 820.
Rupnick, MA, Panigrahy, D, Zhang, C-Y, Dallabrida, SM, Lowell, BB, Langer, R & Folkman, MJAdipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA (2002) 99, 1073010735.
Samad, F, Yamamoto, K & Loskutoff, DJDistribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo - induction by tumor necrosis factor-α and lipopolysaccharide. J Clin Invest (1996) 97, 3746.
Semenza, GLHIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol (2001) 13, 167171.
Soukas, A, Cohen, P, Socci, ND & Friedman, JMLeptin-specific patterns of gene expression in white adipose tissue. Genes Dev (2000) 14, 963980.
Starnes, T, Broxmeyer, HE, Robertson, MJ & Hromas, RCutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J Immunol (2002) 169, 642646.
Straczkowski, M, Dzienis-Straczkowska, S, Stepien, A, Kowalska, I, Szelachowska, M & Kinalska, IPlasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-α system. J Clin Endocrinol Metab (2002) 87, 46024606.
Tchernof, A, Nolan, A, Sites, CK, Ades, PA & Poehlman, ETWeight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation (2002) 105, 564569.
Trayhurn, P & Beattie, JHPhysiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc (2001) 60, 329339.
Uhlar, CM & Whitehead, ASSerum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem (1999) 265, 501523.
Vega, JA, Garcia-Suarez, O, Hannestad, J, Perez-Perez, M & Germana, ANeurotrophins and the immune system. J Anat (2003) 203, 119.
Visser, M, Bouter, LM, McQuillan, GM, Wener, MH & Harris, TBElevated C-reactive protein levels in overweight and obese adults. J Am Med Assoc (1999) 282, 21312135.
Volanakis, JEHuman C-reactive protein: expression, structure, and function. Mol Immunol (2001) 38, 189197.
Vozarova, B, Weyer, C, Hanson, K, Tataranni, PA, Bogardus, C & Pratley, RECirculating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obesity Res (2001) 9, 414417.
Wallenius, K, Wallenius, V, Sunter, D, Dickson, SL & Jansson, JOIntracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun (2002) 293, 560565.
Weisberg, SP, McCann, D, Desai, M, Rosenbaum, M, Leibel, RL & Ferrante, AW JrObesity is associated with macrophage accumulation in adipose tissue. J Clin Invest (2003) 112, 17961808.
Wenger, RHCellular adaptation to hypoxia: O 2 -sensing protein hydroxylases, hypoxia-inducible transcription factors, and O 2 -regulated gene expression. FASEB J (2002) 16, 11511162.
Wiesner, G, Morash, BA, Ur, E & Wilkinson, MFood restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol (2004) 180, R1R6.
Xu, H, Barnes, GT & Yang, QChronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest (2003) 112, 18211830.
Yamauchi, T, Kamon, J & Waki, HThe fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med (2001) 7, 941946.
Yang, YS, Song, HD, Li, RY, Zhou, LB, Zhu, ZD, Hu, RM, Han, ZG & Chen, JLThe gene expression profiling of human visceral adipose tissue and its secretory functions. Biochem Biophys Res Commun (2003) 300, 839846.
Yokota, T, Oritani, K & Takahashi, IAdiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood (2000) 96, 17231732.
Yoon, JC, Chickering, TW, Rosen, ED, Dussault, B, Qin, Y, Soukas, A, Friedman, JM, Holmes, WE & Spiegelman, BMPeroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol (2000) 20, 53435349.
Yudkin, JSAdipose tissue, insulin action and vascular disease: inflammatory signals. Int J Obesity (2003) 27 Suppl. 3, S25S28.
Yudkin, JS, Kumari, M, Humphries, SE & Mohamed-Ali, VInflammation, obesity, stress and coronary heart disease: is interleukin-6 the link?. Atherosclerosis (2000) 148, 209214.
Yudkin, JS, Stehouwer, CD, Emeis, JJ & Coppack, SWC-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue?. Arterioscler Thromb Vasc Biol (1999) 19, 972978.
Zhang, YY, Proenca, R, Maffei, M, Barone, M, Leopold, L & Friedman, JMPositional cloning of the mouse obese gene and its human homolog. Nature (1994) 372, 425432.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed