Skip to main content Accessibility help
×
×
Home

An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy

  • Bright I. Nwaru (a1), Helen Hayes (a2), Lorraine Gambling (a2), Leone C. A. Craig (a3), Keith Allan (a4), Nanda Prabhu (a4), Steven W. Turner (a4), Geraldine McNeill (a3), Maijaliisa Erkkola (a5), Anthony Seaton (a6), Harry J. McArdle (a2) and Graham Devereux (a4)...

Abstract

Maternal nutritional status during pregnancy has been reported to be associated with childhood asthma and atopic disease. The Avon Longitudinal Study of Parents and Children has reported associations between reduced umbilical cord Fe status and childhood wheeze and eczema; however, follow-up was short and lung function was not measured. In the present study, the associations between maternal Fe status during pregnancy and childhood outcomes in the first 10 years of life were investigated in a subgroup of 157 mother–child pairs from a birth cohort with complete maternal, fetal ultrasound, blood and child follow-up data. Maternal Fe intake was assessed using FFQ at 32 weeks of gestation and Hb concentrations and serum Fe status (ferritin, soluble transferrin receptor and TfR-F (transferrin receptor:ferritin) index) were measured at 11 weeks of gestation and at delivery. Maternal Fe intake, Hb concentrations and serum Fe status were found to be not associated with fetal or birth measurements. Unit increases in first-trimester maternal serum TfR concentrations (OR 1·44, 95 % CI 1·05, 1·99) and TfR-F index (OR 1·42, 95 % CI 1·10, 1·82) (i.e. decreasing Fe status) were found to be associated with an increased risk of wheeze, while unit increases in serum ferritin concentrations (i.e. increasing Fe status) were found to be associated with increases in standardised mean peak expiratory flow (PEF) (β 0·25, 95 % CI 0·09, 0·42) and forced expiratory volume in the first second (FEV1) (β 0·20, 95 % CI 0·08, 0·32) up to 10 years of age. Increasing maternal serum TfR-F index at delivery was found to be associated with an increased risk of atopic sensitisation (OR 1·35, 95 % CI 1·02, 1·79). The results of the present study suggest that reduced maternal Fe status during pregnancy is adversely associated with childhood wheeze, lung function and atopic sensitisation, justifying further studies on maternal Fe status and childhood asthma and atopic disease.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: G. Devereux, fax +44 1224 438469, email g.devereux@abdn.ac.uk

References

Hide All
1 Godfrey, KM, Barker, DJP & Osmond, C (1994) Disproportionate fetal growth and raised IgE concentration in adult life. Clin Exp Allergy 24, 641648.
2 Olesen, AB, Ellingsen, AR, Olesen, H, et al. (1997) Atopic dermatitis and birth factors: historical follow up by record linkage. Br Med J 314, 10031008.
3 Shaheen, SO, Sterne, JAC, Montgomery, SM, et al. (1999) Birth weight, body mass index and asthma in young adults. Thorax 54, 396402.
4 Chatkin, MN & Menezes, AM (2005) The association between low birthweight and asthma: a systematic literature review. Rev Panam Salud Publica 17, 102109.
5 Pei, L, Chen, G, Mi, J, et al. (2010) Low birth weight and lung function in adulthood: retrospective cohort study in China, 1948–1996. Pediatrics 125, e899e905.
6 Orfei, L, Strachan, DP, Rudnicka, AR, et al. (2008) Early influences on adult lung function in two national British cohorts. Arch Dis Childhood 93, 570574.
7 Canoy, D, Pekkanen, J, Elliott, P, et al. (2007) Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax 62, 396402.
8 Turner, SW, Campbell, D, Smith, N, et al. (2010) Associations between fetal size, maternal α-tocopherol and childhood asthma. Thorax 65, 391397.
9 Turner, S, Prabhu, N, Danielian, P, et al. (2011) First and second trimester fetal size and asthma outcomes at age ten years. Am J Respir Crit Care Med 184, 407413.
10 Nurmatov, U, Devereux, G & Sheikh, A (2011) Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol 127, 724733.
11 Anandan, C, Nurmatov, U & Sheikh, A (2009) Omega 3 and 6 oils for primary prevention of allergic disease: systematic review and meta-analysis. Allergy 64, 840848.
12 Devereux, G & Wagner, JG (2011) Vitamin D and asthma: scientific promise and clinical reality. Curr Resp Med Rev 7, 408413.
13 Gambling, L, Dunford, S, Wallace, DI, et al. (2003) Iron deficiency during pregnancy affects post-natal blood pressure in the rat. J Physiol 552, 603610.
14 Shaheen, SO, Newson, RB, Henderson, AJ, et al. (2004) Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur Respir J 24, 292297.
15 Martindale, S, McNeill, G, Devereux, G, et al. (2005) Antioxidant intake in pregnancy in relation to wheeze and eczema in the first two years of life. Am J Respir Crit Care Med 171, 121128.
16 Masson, LF, McNeill, G, Tomany, JO, et al. (2003) Statistical approaches for assessing the relative validity of a food frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutr 6, 313321.
17 Chitty, LS, Altman, DG, Henderson, A, et al. (1994) Charts of fetal size: 4. Femur length. Br J Obstet Gynaecol 101, 132135.
18 Chitty, LS, Altman, DG, Henderson, A, et al. (1994) Charts of fetal size: 2. Head measurements. Br J Obstet Gynaecol 101, 3543.
19 Miller, MR, Hankinson, J, Brusasco, V, et al. (2005) Standardisation of spirometry. Eur Respir J 26, 319338.
20 Stanojevic, S, Wade, A, Stocks, J, et al. (2008) Reference ranges for spirometry across all ages. Am J Respir Crit Care Med 177, 253260.
21 Rigas, AS, Sørensen, CJ, Pedersen, OB, et al. (2013) Predictors of iron levels in 14,737 Danish blood donors: results from the Danish Blood Donor Study. Transfusion 54, 789796.
22 Cogswell, ME, Parvanta, I, Ickes, L, et al. (2003) Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr 78, 773781.
23 Cook, JD, Finch, CA & Smith, NJ (1976) Evaluation of the iron status of a population. Blood 48, 449455.
24 Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic Studies. Am J Clin Nutr 65, suppl., 1220S1228S.
25 Nurmatov, U, Nwaru, BI, Devereux, G, et al. (2012) Confounding and effect modification in studies of diet and childhood asthma and allergies. Allergy 67, 10411059.
26 Stern, DA, Morgan, WJ, Wright, AL, et al. (2007) Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet 370, 758764.
27 Groenman, FA, Rutter, M, Wang, J, et al. (2007) Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. Am J Physiol Lung Cell Mol Physiol 293, L557L567.
28 Scholl, TO & Reilly, T (2000) Anemia, iron and pregnancy outcome. J Nutr 130, 443S447S.
29 Alwan, NA, Greenwood, DC, Simpson, NAB, et al. (2011) Dietary iron intake during early pregnancy and birth outcomes in a cohort of British women. Hum Reprod 26, 911919.
30 Brion, MJ, Leary, SD, Smith, GD, et al. (2008) Maternal anemia, iron intake in pregnancy, and offspring blood pressure in the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr 88, 11261133.
31 Maazi, H, Shirinbak, S, Bloksma, N, et al. (2011) Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clin Exp Immunol 166, 8086.
32 Hale, LP, Potts Kant, E, Greer, PK, et al. (2012) Iron supplementation decreases severity of allergic inflammation in murine lung. PLOS ONE 7, e45667.
33 Golub, MS & Hogrefe, CE (2014) Prenatal iron deficiency and monoamine oxidase A (MAOA) polymorphisms: combined risk for later cognitive performance in rhesus monkeys. Genes Nutr 9, 381.
34 Golub, MS, Hogrefe, CE & Germann, SL (2007) Behavior of juvenile rhesus monkeys deprived of iron during fetal or infant development. J Nutr 137, 979984.
35 Golub, MS, Hogrefe, CE, Germann, SL, et al. (2005) Behavioral consequences of developmental iron deficiency in infant rhesus monkeys. Neurotoxicol Teratol 28, 317.
36 Golub, MS, Hogrefe, CE & Unger, EL (2012) Influence of prenatal iron deficiency and MAOA genotype on response to social challenge in rhesus monkey infants. Genes Brain Behav 11, 278290.
37 Scientific Advisory Committee on Nutrition (2010) Iron and Health. London: The Stationery Office. http://www.sacn.gov.uk/pdfs/sacn_iron_and_health_report_web.pdf.
38 Fosset, C, McGaw, B, Abramovich, D, et al. (2004) Inter-relations between ceruloplasmin and Fe status during pregnancy. Biol Trace Elem Res 98, 112.
39 Sweet, DG, Savage, G, Tubman, TRJ, et al. (2001) Study of maternal influences on fetal iron status at term using cord blood transferrin receptors. Arch Dis Child Fetal Neonatal Ed 84, F40F43.
40 Chelchowska, M & Laskowska-Klita, T (2002) Effect of maternal smoking on some markers of iron status in umbilical cord blood. Rocz Akad Med Bialymst 47, 235240.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Nwaru Supplementary Material
Tables

 PDF (62 KB)
62 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed