Skip to main content
×
×
Home

Antioxidant capacity of vegetables, spices and dressings relevant to nutrition

  • Paolino Ninfali (a1) (a2), Gloria Mea (a2), Samantha Giorgini (a2), Marco Rocchi (a3) and Mara Bacchiocca (a1)...
Abstract

Vegetables are the most important sources of phenolics in the Mediterranean diet. Phenolics, especially flavonoids, are suggested as being essential bioactive compounds providing health benefits. In this study, twenty-seven vegetables, fifteen aromatic herbs and some spices consumed in Central Italy (the Marches region) were studied to reveal total phenolic, flavonoid and flavanol content as well as their antioxidant capacity measured by the oxygen radical absorbance capacity (ORAC) method. A comparison in terms of antioxidant capacity was made between different salads, as well as between salads to which aromatic herbs had been added. Lemon balm and marjoram at a concentration of 1·5 % w/w increased by 150 % and 200 % respectively the antioxidant capacity of a salad portion. A 200 g portion of a salad enriched with marjoram corresponded to an intake of 200 (sd 10) mg phenolics and 4000 (sd 300) ORAC units (μmol Trolox equivalents). Olive oils and wine or apple vinegars were the salad dressings that provided the highest increase in antioxidant capacity. Among the spices tested, cumin and fresh ginger made the most significant contribution to the antioxidant capacity. The results are useful in surveying the antioxidant parameters of vegetables, herbs and spices produced and consumed in our geographical area as well as in quantifying the daily intake of phenolics and ORAC units. The results can be used in public health campaigns to stimulate the consumption of vegetables able to provide significant health protection in order to prevent chronic diseases.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Antioxidant capacity of vegetables, spices and dressings relevant to nutrition
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Antioxidant capacity of vegetables, spices and dressings relevant to nutrition
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Antioxidant capacity of vegetables, spices and dressings relevant to nutrition
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Professor Paolino Ninfali, fax +39 722 320188, email p.ninfali@uniurb.it
References
Hide All
American Dietetic Association (1999) Dietary guidance for healthy children aged 2 to 11 years. J Am Diet Assoc 99, 93101.
Ames, BN (1998) Micronutrients prevent cancer and delay aging. Toxicol Letts 5, 102103.
Ames, BN, Gold, LS & Willett, WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci USA 92, 52585265.
Ames, BN, Shigenaga, MK & Hagen, TM (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA 90, 79157922.
Arnous, A, Makris, DP & Kefalas, P (2002) Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J Food Composit Anal 15, 655665.
Arts, ICW, Van de Putte, B & Hollman, PCH (2000) Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J Agric Food Chem 48, 17461751.
Aviram, M (1999) Antiatherogenicity of antioxidants against LDL oxidation. In Natural Antioxidants and Anticarcinogens in Nutrition, Health and Disease, 919 [Kumpulainen, JT and Solonen, JT, editors] Cambridge: Royal Society of Chemistry.
Benavente-Garcia, O, Castillo, J, Marin, FR, Ortuno, A, del Rio, JA (1997) Use and properties of citrus flavonoids. J Agric Food Chem 45, 45054515.
Bugianesi, R, Catasta, G, Spigno, P, D'Uva, A & Maiani, G (2002) Neringenin from cooked tomato paste is bioavailable in men. J Nutr 132, 33493352.
Burns, J, Gardner, PT, O'Neil, J (2000) Relationship among antioxidant activity, vasodilatation capacity and phenolic content of red wines. J Agric Food Chem 48, 220230.
Cao, G, Alessio, HM & Culter, RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Rad Biol Med 14, 303311.
Cao, G, Russell, RM, Lischner, N & Prior, RL (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128, 23832390.
Cao, G, Sofic, E & Prior, RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure–activity relationship. Free Rad Biol Med 22, 749760.
Celi, F, Bini, V, De Giorgi, G, Molinari, D, Faraoni, F, Di Stephano, G, Bacosi, ML, Berioli, MG, Contessa, G & Falorni, A (2003) Epidemiology of overweight and obesity among school children and adolescents in three provinces of central Italy, 1993–2001: Study of potential influencing variables. Eur J Clin Nutr 57, 10451051.
De Pascual-Teresa, S, Santos-Buelga, C, Rivas-Gonzalo, JC (2000) Quantitative analysis of flavan-3-ols in Spanish foodstuffs beverages. J Agric Food Chem 48, 53315337.
Diaz, MN, Frei, B, Vita, JA & Keaney, JF (1997) Antioxidants and atherosclerotic heart disease. N Eng J Med 337, 408416.
Eberhardt, MV, Lee, CY & Liu, RH (2000) Antioxidant activity of fresh apples. Nature 405, 903904.
Erlund, I, Silaste, ML, Alfthan, G, Rantala, M, Kesaniemi, YA & Aro, A (2002) Plasma concentrations of the flavonoids hesperitin, narigenin and quercetin in human subjects following their habitual diets high or low in fruit and vegetables. Eur J Clin Nutr 56, 891898.
Franke, AA, Custer, LJ, Arakaki, C & Murphy, SP (2004) Vitamin C and flavonoids levels of fruits and vegetables consumed in Hawaii. J Food Composit Anal 17, 135.
Gariballa, SE & Sinclair, AJ (1998) Nutrition, ageing and ill health. Br J Nutr 80, 723.
Giacosa, A, Filiberti, R, Hill, MJ & Faivre, J (1997) Vitamins and cancer chemioprevention. Eur J Cancer Prev 6, S47S54.
Gil, MI, Ferreres, F, Tomàs-Barberàn, FA (1999) Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. J Agric Food Chem 47, 22132217.
Halliwell, B (1999) Establishing the significant and optimal intake of dietary antioxidants: the biomarker concept. Nutr Rev 57, 104113.
Kalt, W, Forney, CF & McDonald, J (1998) Changes in fruit phenolic composition and antioxidant capacity during storage. Hortic Sci 33, 469 (abstract).
Kalt, W, Forney, CF, Martin, A & Prior, RL (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem 47, 46384644.
Liu, M, Li, QX, Weber, C, Lee, CY, Brown, J & Liu, RH (2002) Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 50, 29262930.
Lu, H, Meng, X & Li, C (2003) Glucuronides of tea catechins: enzymology of biosynthesis and biological activities. Drug Metab Dispos 31, 452461.
Miller, ER, Appel, LJ & Risby, TH (1998) Effect of dietary patterns on measures of lipid peroxidation: result from a randomized clinical trial. Circulation 98, 23902395.
Miyagi, Y, Miwa, K & Inoue, H (1997) Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. Am J Cardiol 80, 16271631.
Mukamal, KJ, Conigrave, KM, Mittleman, MA, Camargo, CA, Stampfer, MJ, Willet, WC & Rimm, EB (2003) Roles of drinking pattern and type of alchohol consumed in coronary heart disease in men. N Engl J Med 348, 109118.
Muller, H, Bub, A, Waltzl, B & Rechkemmer, G (1999) Plasma concentration of carotenoids in healthy volunteers after intervention with carotenoid-rich foods. Eur J Nutr 38, 3544.
Nicoli, MC, Anese, M & Parpinel, M (1999) Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10, 94100.
Ninfali, P & Bacchiocca, M (2003) Polyphenols and antioxidant capacity of vegetables under fresh and frozen conditions. J Agric Food Chem 51, 22222226.
Ninfali, P & Bacchiocca, M (2004) Parameters for the detection of post-harvest quality in fresh or transformed horticultural crops. J Food Agric Environ 2, 122127.
Ninfali, P, Aluigi, G, Bacchiocca, M & Magnani, M (2001) Antioxidant capacity of vegetable oils. J Am Oil Chem Soc 78, 243247.
Ninfali, P, Bacchiocca, M, Biagiotti, E, Servili, M & Montedoro, GF (2002) Validation of the oxygen radical absorbance capacity (ORAC) parameter as a new index of quality and stability of virgin olive oil. J Am Oil Chem Soc 79, 977982.
Ou, B, Hampsch-Woodill, M & Prior, RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49, 46194626.
Ou, B, Huang, D, Hampsch-Woodill, M, Flanagan, JA & Deemer, E (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50, 31223128.
Prior, RL, Hoang, H & Gu, L (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC FL)) of plasma and other biological and food samples. J Agric Food Chem 51, 32733279.
Reaven, GM (2001) Insulin resistance, compensatory hyperinsulinemia, and coronary heart disease: syndrome X revisited. In Handbook of Physiology, Section 7. The Endocrine System, vol. II, The Endocrine Pancreas and Regulation of Metabolism 11691197 [Jefferson, LS and Cherrington, AD, editors] New York: Oxford University Press.
Rumm-Kreuter, D (2001) Comparison of the eating and cooking habits of northern Europe and Mediterranean countries in the past, present and future. Int J Vitamin Nutr Res 71, 141148.
Serafini, M, Bugianesi, R, Salucci, M, Azzini, E, Raguzzini, A & Maiani, G (2002) Effect of acute ingestion of fresh and stored lettuce ( Lactuca sativa ) on plasma total antioxidant capacity and antioxidant capacity and levels in human subjects. Br J Nutr 88, 615623.
Singleton, VL, Orthofer, R, Lamuela-Raventos, RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by mean of Folin-Ciocalteu reagent. Methods Enzymol 299, 152178.
Smith, MJ, Inserra, PF, Watson, RR, Wise, JA, O'Neill, KL (1999) Supplementation with fruit and vegetable extracts may decrease DNA damage in the peripheral lymphocytes of an elderly population. Nutr Res 19, 15071518.
Stewart, RJ, Askew, EW, McDonald, CM, Metos, J, Jackson, WD, Baldon, TW & Prior, RL (2002) Antioxidant status of young children: response to an antioxidant supplement. J Am Diet Assoc 102, 16521657.
Szeto, YT, Tomlinson, B & Benzie, IFF (2002) Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. Br J Nutr 87, 5559.
Vinson, JA, Proch, J & Bose, P (2001) Determination of quantity and quality of poliphenol antioxidants in foods and beverages. Methods Enzymol 335, 103114.
Visioli, F & Galli, C (1998) The effect of minor constituents of olive oil on cardiovascular disease: new findings. Nutr Rev 56, 142147.
Visioli, F, Bellomo, G & Galli, C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247, 6064.
Walle, T (2004) Absorption and metabolism of flavonoids. Free Rad Biol Med 36, 829837.
Willett, WC (2002) Balancing life-style and genomics research for disease prevention. Science 296, 695698.
World Health OrganizationWorld Health Organization (1985) Diabetes Mellitus: Report of a WHO Study Group.Geneva:WHO.
World Health OrganizationWorld Health Organization (1990) Diet, Nutrition and Prevention of Chronic Diseases: Report of a WHO Study Group Technical Report Seriesno. 797GenevaWHO.
World Health OrganizationWorld Health Organization (2003) Report of a Joint FAO/WHO Expert Consultation: Diet, Nutrition and the Prevention of Chronic Diseases Technical Report Seriesno. 916Geneva:WHO.
Zheng, W & Wang, SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49, 51655170.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 817 *
Loading metrics...

Abstract views

Total abstract views: 1467 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th August 2018. This data will be updated every 24 hours.