Skip to main content Accessibility help
×
Home

Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase

  • Oliver Neubauer (a1), Stefanie Reichhold (a1), Lukas Nics (a1), Christine Hoelzl (a2), Judit Valentini (a1), Barbara Stadlmayr (a1), Siegfried Knasmüller (a2) and Karl-Heinz Wagner (a1)...

Abstract

Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, α-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and γ-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr O. Neubauer, fax +43 1 4277 9549, email oliver.neubauer@univie.ac.at

References

Hide All
1 Powers, SK & Jackson, MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88, 12431276.
2 Ji, LL (2008) Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med 44, 142152.
3 Gomez-Cabrera, MC, Domenech, E, Romagnoli, M, et al. (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87, 142149.
4 Ristow, M, Zarse, K, Oberbach, A, et al. (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106, 86658670.
5 Vina, J, Gomez-Cabrera, MC & Borras, C (2007) Fostering antioxidant defences: up-regulation of antioxidant genes or antioxidant supplementation? Br J Nutr 98, Suppl. 1, S36S40.
6 Margaritis, I & Rousseau, AS (2008) Does physical exercise modify antioxidant requirements? Nutr Res Rev 21, 312.
7 Millet, GP, Dreano, P & Bentley, DJ (2003) Physiological characteristics of elite short- and long-distance triathletes. Eur J Appl Physiol 88, 427430.
8 Jeukendrup, AE, Jentjens, RL & Moseley, L (2005) Nutritional considerations in triathlon. Sports Med 35, 163181.
9 Lee, IM, Hsieh, CC & Paffenbarger, RS Jr (1995) Exercise intensity and longevity in men. The Harvard Alumni Health Study. JAMA 273, 11791184.
10 Knez, WL, Coombes, JS & Jenkins, DG (2006) Ultra-endurance exercise and oxidative damage: implications for cardiovascular health. Sports Med 36, 429441.
11 Mastaloudis, A, Morrow, JD, Hopkins, DW, et al. (2004) Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med 36, 13291341.
12 Nieman, DC, Henson, DA, McAnulty, SR, et al. (2004) Vitamin E and immunity after the Kona Triathlon World Championship. Med Sci Sports Exerc 36, 13281335.
13 Knez, WL, Jenkins, DG & Coombes, JS (2007) Oxidative stress in half and full ironman triathletes. Med Sci Sports Exerc 39, 283288.
14 Nieman, DC, Henson, DA, McAnulty, SR, et al. (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 92, 19701977.
15 Neubauer, O, König, D & Wagner, KH (2008) Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. Eur J Appl Physiol 104, 417426.
16 König, D, Neubauer, O, Nics, L, et al. (2007) Biomarkers of exercise-induced myocardial stress in relation to inflammatory and oxidative stress. Exerc Immunol Rev 13, 1536.
17 Neubauer, O, König, D, Kern, N, et al. (2008) No indications of persistent oxidative stress in response to an ironman triathlon. Med Sci Sports Exerc 40, 21192128.
18 Reichhold, S, Neubauer, O, Ehrlich, V, et al. (2008) No acute and persistent DNA damage after an Ironman triathlon. Cancer Epidemiol Biomarkers Prev 17, 19131919.
19 Reichhold, S, Neubauer, O, Hoelzl, C, et al. (2009) DNA damage in response to an Ironman triathlon. Free Radic Res 43, 753760.
20 Neubauer, O, Reichhold, S, Nersesyan, A, et al. (2008) Exercise-induced DNA damage: is there a relationship with inflammatory responses? Exerc Immunol Rev 14, 5172.
21 Food and Nutrition Board/Institute of Medicine (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academies Press.
22 DACH (2000) Referenzwerte für die Nährstoffzufuhr, Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung; Umschau Braus, Frankfurt am Main (Reference values for nutrient intake, German Nutrition Society, Austrian Nutrition Society, Swiss Society of Food Research, Swiss Association for Nutrition, Umschau Braus, Frankfurt am Main).
23 Ramel, A, Wagner, KH & Elmadfa, I (2004) Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr 43, 26.
24 Knasmuller, S, Nersesyan, A, Misik, M, et al. (2008) Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr 99, Suppl. 1, ES3ES52.
25 Tomasch, R, Wagner, KH & Elmadfa, I (2001) Antioxidative power of plant oils in humans: the influence of alpha- and gamma-tocopherol. Ann Nutr Metab 45, 110115.
26 Benzie, IF & Strain, JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239, 7076.
27 Benzie, IF & Strain, JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299, 1527.
28 Ou, B, Hampsch-Woodill, M & Prior, RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49, 46194626.
29 Huang, D, Ou, B, Hampsch-Woodill, M, et al. (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50, 44374444.
30 Wagner, KH, Reichhold, S, Knasmuller, S, et al. (2010) Does an Ironman triathlon consistently influence oxidative stress, antioxidant status and DNA stability? Toxicology (In the Press).
31 Tice, RR, Agurell, E, Anderson, D, et al. (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35, 206221.
32 Collins, AR, Duthie, SJ & Dobson, VL (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14, 17331735.
33 Dill, DB & Costill, DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37, 247248.
34 Shaskey, DJ & Green, GA (2000) Sports haematology. Sports Med 29, 2738.
35 Gleeson, M, Robertson, JD & Maughan, RJ (1987) Influence of exercise on ascorbic acid status in man. Clin Sci (Lond) 73, 501505.
36 Prior, RL & Cao, G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27, 11731181.
37 Nikolaidis, MG & Jamurtas, AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490, 7784.
38 Liu, ML, Bergholm, R, Makimattila, S, et al. (1999) A marathon run increases the susceptibility of LDL to oxidation in vitro and modifies plasma antioxidants. Am J Physiol 276, E1083E1091.
39 Buehler, PW & Alayash, AI (2005) Redox biology of blood revisited: the role of red blood cells in maintaining circulatory reductive capacity. Antioxid Redox Signal 7, 17551760.
40 Suzuki, K, Peake, J, Nosaka, K, et al. (2006) Changes in markers of muscle damage, inflammation and HSP70 after an Ironman triathlon race. Eur J Appl Physiol 98, 525534.
41 Viguie, CA, Frei, B, Shigenaga, MK, et al. (1993) Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 75, 566572.
42 Rousseau, AS, Hininger, I, Palazzetti, S, et al. (2004) Antioxidant vitamin status in high exposure to oxidative stress in competitive athletes. Br J Nutr 92, 461468.
43 Mastaloudis, A, Leonard, SW & Traber, MG (2001) Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 31, 911922.
44 Levine, M, Conry-Cantilena, C, Wang, Y, et al. (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 93, 37043709.
45 Palazzetti, S, Rousseau, AS, Richard, MJ, et al. (2004) Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr 91, 91100.
46 Avula, CP, Muthukumar, AR, Zaman, K, et al. (2001) Inhibitory effects of voluntary wheel exercise on apoptosis in splenic lymphocyte subsets of C57BL/6 mice. J Appl Physiol 91, 25462552.
47 Dotan, Y, Lichtenberg, D & Pinchuk, I (2004) Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 43, 200227.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed