Skip to main content
×
×
Home

Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches

  • Ted Jost (a1), Christophe Lacroix (a1), Christian Braegger (a2) and Christophe Chassard (a1)
Abstract

Initial neonatal gut colonisation is a crucial stage for developing a healthy physiology, beneficially influenced by breast-feeding. Breast milk has been shown not only to provide nutrients and bioactive/immunological compounds, but also commensal bacteria, including gut-associated anaerobic Bifidobacterium spp. The aim of the present study was to investigate bacterial diversity in breast milk, with emphasis on identifying gut-associated obligate anaerobes. Breast milk collected from seven mothers at three sampling points (days 3–6, 9–14 and 25–30 postpartum) was analysed by combined culture-dependent and state-of-the-art, culture-independent methods (Sanger sequencing and 454-pyrosequencing). In addition to the predominance of facultative anaerobes such as Staphylococcus, Streptococcus and Propionibacterium (>90 % of isolated strains and 23·7 % relative abundance using pyrosequencing), significant populations of obligate anaerobes, including Bifidobacterium and Veillonella, were detected using pyrosequencing and confirmed by the isolation of viable strains (3·4 % of isolates and 1·4 % relative abundance). Pyrosequencing also revealed the presence of DNA of multiple major gut-associated obligate anaerobes (6·2 % relative abundance) such as Bacteroides and, for the first time, several members of the Clostridia, including butyrate producers, such as Faecalibacterium and Roseburia, which are important for colonic health. The present study suggests that breast milk may be a major source of bacterial diversity to the neonatal gut, including gut-associated obligate anaerobes, and may thus significantly influence gut colonisation and maturation of the immune system.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: C. Lacroix, fax +41 44 6321403, email christophe.lacroix@hest.ethz.ch
References
Hide All
1Hosea Blewett HJ, Cicalo MC, Holland CD, et al. (2008) The immunological components of human milk. In Advances in Food and Nutrition Research, vol. 54, pp. 45–80 [LT Steve, editor]. San Diego: Academic Press.
2Fernandez, L, Langa, S, Martin, V, et al. (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69, 110.
3Rautava, S, Luoto, R, Salminen, S, et al. (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9, 565576.
4Heikkila, MP & Saris, PE (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95, 471478.
5Solis, G, de Los Reyes-Gavilan, CG, Fernandez, N, et al. (2010) Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16, 307310.
6Jimenez, E, Delgado, S, Maldonado, A, et al. (2008) Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol 8, 143.
7Albesharat, R, Ehrmann, MA, Korakli, M, et al. (2011) Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 34, 148155.
8Perez, PF, Dore, J, Leclerc, M, et al. (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119, e724e732.
9Arboleya, S, Ruas-Madiedo, P, Margolles, A, et al. (2010) Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int J Food Microbiol 149, 2836.
10Martin, V, Maldonado-Barragan, A, Moles, L, et al. (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28, 3644.
11Martin, R, Jimenez, E, Heilig, H, et al. (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75, 965969.
12Makino, H, Kushiro, A, Ishikawa, E, et al. (2011) Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 77, 67886793.
13Jost, T, Lacroix, C, Braegger, CP, et al. (2012) New insights in gut microbiota establishment in healthy breast fed neonates. PLoS One 7, e44595.
14Collado, MC, Delgado, S, Maldonado, A, et al. (2009) Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol 48, 523528.
15Martin, R, Heilig, HGHJ, Zoetendal, EG, et al. (2007) Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 158, 3137.
16Cabrera-Rubio, R, Collado, MC, Laitinen, K, et al. (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 96, 544551.
17Hunt, KM, Foster, JA, Forney, LJ, et al. (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 6, e21313.
18Macfarlane, GT, Hay, S, Macfarlane, S, et al. (1990) Effect of different carbohydrates on growth, polysaccharidase and glycosidase production by Bacteroides ovatus, in batch and continuous culture. J Appl Bacteriol 68, 179187.
19Beerens, H (1991) Detection of bifidobacteria by using propionic acid as a selective agent. Appl Environ Microbiol 57, 24182419.
20Steer, TE, Gee, JN, Johnson, IT, et al. (2004) Biodiversity of human faecal bacteria isolated from phytic acid enriched chemostat fermenters. Curr Issues Intest Microbiol 5, 2339.
21Hartemink, R, Domenech, VR & Rombouts, FM (1997) LAMVAB – a new selective medium for the isolation of lactobacilli from faeces. J Microbiol Methods 29, 7784.
22Dethlefsen, L, Huse, S, Sogin, ML, et al. (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280.
23Altschul, SF, Gish, W, Miller, W, et al. (1990) Basic local alignment search tool. J Mol Biol 215, 403410.
24Benson, DA, Karsch-Mizrachi, I, Lipman, DJ, et al. (2011) GenBank. Nucleic Acids Res 39, D32D37.
25Andersson, AF, Lindberg, M, Jakobsson, H, et al. (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3, e2836.
26Wang, Q, Garrity, GM, Tiedje, JM, et al. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73, 52615267.
27Schloss, PD, Westcott, SL, Ryabin, T, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75, 75377541.
28Chao, A & Shen, T-J (2003) Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environ Ecol Stat 10, 429443.
29Jara, S, Sanchez, M, Vera, R, et al. (2011) The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe 17, 474477.
30Gronlund, MM, Gueimonde, M, Laitinen, K, et al. (2007) Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy 37, 17641772.
31Yuan, S, Cohen, DB, Ravel, J, et al. (2012) Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 7, e33865.
32Maukonen, J, Simoes, C & Saarela, M (2012) The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol 79, 697708.
33Claesson, MJ, Wang, Q, O'Sullivan, O, et al. (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38, e200.
34Wu, GD, Lewis, JD, Hoffmann, C, et al. (2010) Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol 10, 206.
35Martin, R, Langa, S, Reviriego, C, et al. (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143, 754758.
36Martin, R, Jimenez, E, Olivares, M, et al. (2006) Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother–child pair. Int J Food Microbiol 112, 3543.
37Thomas, DW & Greer, FR (2010) Probiotics and prebiotics in pediatrics. Pediatrics 126, 12171231.
38Jimenez, E, Fernandez, L, Maldonado, A, et al. (2008) Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl Environ Microbiol 74, 46504655.
39Arroyo, R, Martin, V, Maldonado, A, et al. (2010) Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin Infect Dis 50, 15511558.
40Abrahamsson, TR, Sinkiewicz, G, Jakobsson, T, et al. (2009) Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. J Pediatr Gastroenterol Nutr 49, 349354.
41Duncan, SH, Louis, P & Flint, HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70, 58105817.
42Martín, R, Langa, S, Reviriego, C, et al. (2004) The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 15, 121127.
43Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology, vol. 3, pp. 117–132 [JR Norris and DW Ribbons, editors]. New York: Academic Press.
44Lagier, JC, Armougom, F, Million, M, et al. (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18, 11851193.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 144
Total number of PDF views: 636 *
Loading metrics...

Abstract views

Total abstract views: 1196 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2018. This data will be updated every 24 hours.