Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T15:09:13.471Z Has data issue: false hasContentIssue false

The association between B vitamins and the risk of COVID-19

Published online by Cambridge University Press:  09 November 2022

Mina Darand
Affiliation:
Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
Shirin Hassanizadeh
Affiliation:
Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
Fahime Martami
Affiliation:
PhD student in Nutritional Sciences, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Isfahan, Iran
Shamim Shams
Affiliation:
Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Nutrition, School of public health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
Masoud Mirzaei
Affiliation:
Yazd Cardiovascular Research Centre, Non-communicable Disease Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Mahdieh Hosseinzadeh*
Affiliation:
Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Nutrition, School of public health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
*
* Corresponding author: Mahdieh Hosseinzadeh, email hoseinzade.mahdie@gmail.com

Abstract

The fast spread of the coronavirus disease 2019 (COVID-19) epidemic and its high mortality were quickly noticed by the health community. B vitamins are essential micronutrients for the body with antioxidant, anti-inflammatory and immune-regulating properties. The present study can provide a comprehensive picture of the associations between B vitamins and COVID-19 incidence. This study was undertaken on 9189 adult participants of the Yazd Health Study (YaHS) and Taghzieh Mardom-e-Yazd (TAMIZ) study aged 20 to 69 years. Data on dietary intakes were obtained using a validated FFQ. Multivariable logistic regression analysis was used to evaluate the association between B vitamins and COVID-19. Our findings indicated that participants in the fourth quartile of vitamin B5 intake compared with the first quartile had a protective effect against COVID-19 (OR: 0·53, 95 % CI 0·28, 0·99, P-trend = 0·02) after adjustment for all possible confounds in model 3. In addition, participants in the third quartile of vitamin B12 intake compared with the first quartile (OR: 0·63, 95 % CI 0·40, 0·98, P-trend = 0·11) had fewer odds of COVID-19 after full adjustments for confounders. Our findings indicated no significant relationship between dietary intake of vitamin B1, B2, B3, B9 and B-complex and COVID-19. A higher intake of vitamin B5 could reduce the odds of COVID-19 by 47 %, and a moderate intake of vitamin B12 had a protective effect on COVID-19. Although our study has promising results, stronger clinical studies are needed.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors are equal in the position of the first name

References

Khanna, RC, Cicinelli, MV, Gilbert, SS, et al. (2020) COVID-19 pandemic: lessons learned and future directions. Indian J Ophthalmol 68, 703.CrossRefGoogle ScholarPubMed
Miller, M (2019) Novel Coronavirus COVID-19 (2019-nCoV) Data Repository: Johns Hopkins University Center for Systems Science and Engineering. Bulletin-Association of Canadian Map Libraries and Archives (ACMLA), 30 March 2020, No. 164, pp. 47–51.Google Scholar
McArthur, L, Sakthivel, D, Ataide, R, et al. (2020) Review of burden, clinical definitions, and management of COVID-19 cases. Am J Trop Med Hyg 103, 625638.CrossRefGoogle ScholarPubMed
Jin, H, Wang, H, Li, X, et al. (2021) Economic burden of COVID-19, China, January–March, 2020: a cost-of-illness study. Bull World Health Org 99, 112.CrossRefGoogle ScholarPubMed
Yelin, D, Wirtheim, E, Vetter, P, et al. (2020) Long-term consequences of COVID-19: research needs. Lancet Infect Dis 20, 11151117.CrossRefGoogle ScholarPubMed
Baj, J, Karakuła-Juchnowicz, H, Teresiński, G, et al. (2020) COVID-19: specific and non-specific clinical manifestations and symptoms: the current state of knowledge. J Clin Med 9, 1753.CrossRefGoogle ScholarPubMed
Paces, J, Strizova, Z, Smrz, D, et al. (2020) COVID-19 and the immune system. Physiol Res 69, 379.CrossRefGoogle ScholarPubMed
Venkatraman, JT & Pendergast, DR (2002) Effect of dietary intake on immune function in athletes. Sports Med 32, 323337.CrossRefGoogle ScholarPubMed
Watson, RR, Zibadi, S & Preedy, VR (2010) Dietary Components and Immune Function. Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
Darand, M, Hassanizadeh, S, Marzban, A, et al. (2022) The association between dairy products and the risk of COVID-19. Eur J Clin Nutr 76, 15831589.CrossRefGoogle ScholarPubMed
Herrmann, W & Obeid, R (2011) Vitamins in the Prevention of Human Diseases. Berlin: Walter de Gruyter.Google Scholar
LeBlanc, JG & de Giori, GS (2018) B Group Vitamins - Current Uses and Perspectives [Internet]. London: IntechOpen, 154 p. https://www.intechopen.com/books/6709 (accessed November 2022).CrossRefGoogle Scholar
Maggini, S, Pierre, A & Calder, PC (2018) Immune function and micronutrient requirements change over the life course. Nutrients 10, 1531.CrossRefGoogle ScholarPubMed
Shakoor, H, Feehan, J, Mikkelsen, K, et al. (2021) Be well: a potential role for vitamin B in COVID-19. Maturitas 144, 108111.CrossRefGoogle Scholar
Manzanares, W & Hardy, G (2020) Vitamin B12 Pharmaconutrition for COVID-19 Farmaconutrición de la Vitamina B12 Para COVID-19. https://doi.org/10.35454/rncm.v4n1.187 (accessed September 2020).CrossRefGoogle Scholar
Keil, SD, Ragan, I, Yonemura, S, et al. (2020) Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment. Vox Sang 115, 495501.CrossRefGoogle ScholarPubMed
Desbarats, J (2020) Pyridoxal 5'-phosphate to mitigate immune dysregulation and coagulopathy in COVID-19. https://doi.org/10.20944/preprints202005.0144.v1 (accessed May 2020).CrossRefGoogle Scholar
dos Santos, LMJ (2020) Can vitamin B12 be an adjuvant to COVID-19 treatment? GSC Biol Pharm Sciences 11, 001005.CrossRefGoogle Scholar
Sheybani, Z, Dokoohaki, MH, Negahdaripour, M, et al. (2020) The role of folic acid in the management of respiratory disease caused by COVID-19. Preprint 12034980, v1.Google Scholar
Tan, CW, Ho, LP, Kalimuddin, S, et al. (2020) Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B(12) in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition 79–80, 111017.CrossRefGoogle Scholar
Shakeri, H, Azimian, A, Ghasemzadeh-Moghaddam, H, et al. (2021) Evaluation of the relationship between serum levels of zinc, vitamin B12, vitamin D, and clinical outcomes in patients with COVID-19. J Med Virol 94, 141146.CrossRefGoogle ScholarPubMed
Tomasa-Irriguible, T-M, Bielsa-Berrocal, L, Bordejé-Laguna, L, et al. (2021) Low levels of few micronutrients may impact COVID-19 disease progression: an observational study on the first wave. Metabolites 11, 565.CrossRefGoogle ScholarPubMed
Mirzaei, M, Salehi-Abargouei, A, Mirzaei, M, et al. (2018) Cohort profile: the Yazd Health Study (YaHS): a population-based study of adults aged 20–70 years (study design and baseline population data). Int J Epidemiol 47, 697698h.CrossRefGoogle ScholarPubMed
Tahamtan, A & Ardebili, A (2020) Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagnostics 20, 453454.CrossRefGoogle ScholarPubMed
Nakano, Y, Kurano, M, Morita, Y, et al. (2021) Time course of the sensitivity and specificity of anti-SARS-CoV-2 IgM and IgG antibodies for symptomatic COVID-19 in Japan. Sci Rep 11, 110.CrossRefGoogle ScholarPubMed
Bodner-Montville, J, Ahuja, JK, Ingwersen, LA, et al. (2006) USDA food and nutrient database for dietary studies: released on the web. J Food Compos Anal 19, S100S107.CrossRefGoogle Scholar
Abbasi-Shavazi, MJ & McDonald, P (2007) Family Change in Iran: Religion, Revolution, and the State. International Family Change, pp. 191212. Milton Park: Routledge.Google Scholar
Committee IR (2005) Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. http://wwwipaqkise/scoringpdf (accessed November 2005).Google Scholar
Moghaddam, MB, Aghdam, FB, Jafarabadi, MA, et al. (2012) The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci J 18, 10731080.Google Scholar
Khalagi, K, Gharibzadeh, S, Khalili, D, et al. (2021) Prevalence of COVID-19 in Iran: results of the first survey of the Iranian COVID-19 Serological Surveillance programme. Clin Microbiol Infection 27, 16661671.CrossRefGoogle ScholarPubMed
Grant, WB, Lahore, H, McDonnell, SL, et al. (2020) Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12, 988.CrossRefGoogle ScholarPubMed
Mercola, J, Grant, WB & Wagner, CL (2020) Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients 12, 3361.CrossRefGoogle ScholarPubMed
Carr, AC & Rowe, S (2020) The emerging role of vitamin C in the prevention and treatment of COVID-19. Nutrients 12, 3286.CrossRefGoogle Scholar
McPherson, SW, Keunen, JE, Bird, AC, et al. (2020) Investigate oral zinc as a prophylactic treatment for those at risk for COVID-19. Am J Ophthalmol 216, A5.CrossRefGoogle ScholarPubMed
Louca, P, Murray, B, Klaser, K, et al. (2021) Modest effects of dietary supplements during the COVID-19 pandemic: insights from 445 850 users of the COVID-19 Symptom Study app. BMJ Nutr, Prev Health 4, 149.CrossRefGoogle ScholarPubMed
Calder, PC (2020) Nutrition, immunity and COVID-19. BMJ Nutr Prev Health 3, 74.CrossRefGoogle ScholarPubMed
Belanger, MJ, Hill, MA, Angelidi, AM, et al. (2020) Covid-19 and disparities in nutrition and obesity. New Engl J Med 383, e69.CrossRefGoogle ScholarPubMed
Smith, VH, Jones, TP & Smith, MS (2005) Host nutrition and infectious disease: an ecological view. Front Ecol Environ 3, 268274.CrossRefGoogle Scholar
Farhadi, S & Ovchinnikov, RS (2018) The relationship between nutrition and infectious diseases: a review. Biomed Biotechnology Res J 2, 168.Google Scholar
Jayawardena, R & Misra, A (2020) Balanced diet is a major casualty in COVID-19. Diabetes Metab Syndrome 14, 1085.CrossRefGoogle Scholar
Ambati, K & Sucharitha, K (2020) An overview of balanced diet on covid-19. J Inf Comput Sci 13, 713.Google Scholar
Aman, F & Masood, S (2020) How nutrition can help to fight against COVID-19 pandemic. Pak J Med Sci 36, S121.CrossRefGoogle ScholarPubMed
Lohi, AS & Sawarkar, G (2020) Management of diet during COVID-19 pandemic. Int J Res Pharm Sci 11, 154157.CrossRefGoogle Scholar
Merino, J, Joshi, AD, Nguyen, LH, et al. (2021) Diet quality and risk and severity of COVID-19: a prospective cohort study. Gut 70, 20962104.CrossRefGoogle ScholarPubMed
Zhao, X, Li, Y, Ge, Y, et al. (2021) Evaluation of nutrition risk and its association with mortality risk in severely and critically ill COVID-19 patients. J Parenteral Enteral Nutr 45, 3242.CrossRefGoogle ScholarPubMed
Bousquet, J, Anto, JM, Iaccarino, G, et al. (2020) Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin Transl Allergy 10, 16.CrossRefGoogle ScholarPubMed
Jung, S, Kim, M & Choi, B (2017) The long-term relationship between dietary pantothenic acid (vitamin B5) intake and C-reactive protein concentration in adults aged 40 years and older. Nutr, Metab Cardiovasc Dis 27, 806816.CrossRefGoogle ScholarPubMed
Mikkelsen, K & Apostolopoulos, V (2019) Vitamin B1, B2, B3, B5, and B6 and the Immune System. In Nutrition and Immunity, pp. 115125 [Mahmoudi, M and Rezaei, N, editors]. Cham: Springer International Publishing.CrossRefGoogle Scholar
Gheita, AA, Gheita, TA & Kenawy, SA (2020) The potential role of B5: a stitch in time and switch in cytokine. Phytother Res 34, 306314.CrossRefGoogle ScholarPubMed
He, W, Hu, S, Du, X, et al. (2018) Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with Mycobacterium tuberculosis. Front Immunol 9, 365.CrossRefGoogle ScholarPubMed
Meisel, E, Efros, O, Bleier, J, et al. (2021) Folate levels in patients hospitalized with Coronavirus Disease 2019. Nutrients 13, 812.CrossRefGoogle ScholarPubMed
Wiltshire, E, Peña, AS, MacKenzie, K, et al. (2020) High dose folic acid is a potential treatment for pulmonary hypertension, including when associated with COVID-19 pneumonia. Med Hypotheses 143, 110142.CrossRefGoogle ScholarPubMed
Baart, AM, Balvers, MGJ, de Vries, JHM, et al. (2021) Relationship between intake and plasma concentrations of vitamin B12 and folate in 873 adults with a physically active lifestyle: a cross-sectional study. J Hum Nutr Diet 34, 324333.CrossRefGoogle ScholarPubMed
Michele, CA, Angel, B, Valeria, L, et al. (2020) Vitamin supplements in the era of SARS-Cov2 pandemic. GSC Biol Pharm Sciences 11, 007019.CrossRefGoogle Scholar
Mahmoudi, M & Rezaei, N (2019) Nutrition and Immunity. Cham: Springer.CrossRefGoogle Scholar
LeBlanc, JG, Milani, C, De Giori, GS, et al. (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24, 160168.CrossRefGoogle Scholar
Gominak, S (2016) Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a ‘pro-inflammatory’ state associated with atherosclerosis and autoimmunity. Med Hypotheses 94, 103107.CrossRefGoogle ScholarPubMed
Zuo, T, Wu, X, Wen, W, et al. (2021) Gut microbiome alterations in COVID-19. Genomics, Proteomics Bioinformatics 19, 679688.CrossRefGoogle ScholarPubMed
Deschasaux-Tanguy, M, Srour, B, Bourhis, L, et al. (2021) Nutritional risk factors for SARS-CoV-2 infection: a prospective study within the NutriNet-Santé cohort. BMC Med 19, 290.CrossRefGoogle ScholarPubMed