Skip to main content Accessibility help
×
Home

Association between dietary patterns and low bone mineral density among adults aged 50 years and above: findings from the North West Adelaide Health Study (NWAHS)

  • Yohannes Adama Melaku (a1) (a2), Tiffany K. Gill (a1), Robert Adams (a3) and Zumin Shi (a1)

Abstract

Studies on the association between dietary patterns and bone mineral density (BMD) have reported inconsistent findings. Data from the North West Adelaide Health Study, a population-based cohort study undertaken in Australia, were used to assess this association among adults aged 50 years and above. In this specific study, 1182 adults (545 males, 45·9 %) had dietary data collected using a FFQ and also had BMD measurements taken using dual-energy X-ray absorptiometry. Factor analysis with principal component method was applied to ascertain dietary patterns. Two distinct dietary patterns were identified. Pattern 1 (‘prudent pattern’) was characterised by high intake of fruits, vegetables, sugar, nut-based milk, fish, legumes and high-fibre bread. In contrast, pattern 2 (‘Western pattern’) was characterised by high levels of processed and red meat, snacks, takeaway foods, jam, beer, soft drinks, white bread, poultry, potato with fat, high-fat dairy products and eggs. Compared with the study participants in the first tertile (T1, lowest consumption) of the prudent pattern, participants in the third tertile (T3) had a lower prevalence of low BMD (prevalence ratio (PR)=0·52; 95 % CI 0·33, 0·83) after adjusting for socio-demographic, lifestyle and behavioural characteristics, chronic conditions and energy intake. Participants in T3 of the Western pattern had a higher prevalence of low BMD (PR=1·68; 95 % CI 1·02, 2·77) compared with those in T1. In contrast to the Western diet, a dietary pattern characterised by high intake of fruits, vegetables and dairy products is positively associated with BMD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Association between dietary patterns and low bone mineral density among adults aged 50 years and above: findings from the North West Adelaide Health Study (NWAHS)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Association between dietary patterns and low bone mineral density among adults aged 50 years and above: findings from the North West Adelaide Health Study (NWAHS)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Association between dietary patterns and low bone mineral density among adults aged 50 years and above: findings from the North West Adelaide Health Study (NWAHS)
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Y. A. Melaku, fax +61 8 8313 1218, email yohannes.melaku@adelaide.edu.au

References

Hide All
1. Manolagas, SC & Jilka, RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332, 305311.
2. Cooper, C, Campion, G & Melton, LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2, 285289.
3. Gill, T, Martine, T, Laslett, L, et al. (2008) An Epidemiological Analysis of Osteoporosis among South Australian Adults. Adelaide: Population Research and Outcome Studies Unit, SA Health.
4. Australian Bureau of Statistics (2012) Australian Health Survey, 2011–2012. Canberra: Australian Bureau of Statistics.
5. Kanis, JA (1996) Testbook of Osteoporosis. Oxford: Blackwell Science.
6. Sahni, S, Mangano, KM, McLean, RR, et al. (2015) Dietary approaches for bone health: lessons from the Framingham Osteoporosis Study. Curr Osteoporos Rep 13, 245255.
7. Wei, P, Liu, M, Chen, Y, et al. (2012) Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med 5, 243248.
8. Caroli, A, Poli, A, Ricotta, D, et al. (2011) Invited review: dairy intake and bone health: a viewpoint from the state of the art. J Dairy Sci 94, 52495262.
9. Skowronska-Jozwiak, E, Jaworski, M, Grzywa, A, et al. (2014) Influence of calcium intake on bone mineral density and incidence of fractures in treatment-naive women from Lodz urban area – a part of EPOLOS study. Ann Agric Environ Med 21, 201204.
10. Mangano, KM, Sahni, S, Kerstetter, JE, et al. (2013) Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporos Rep 11, 203212.
11. Messina, MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70, 439s450s.
12. Newby, PK & Tucker, KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 62, 177203.
13. Michels, KB & Schulze, MB (2005) Can dietary patterns help us detect diet–disease associations? Nutr Res Rev 18, 241248.
14. Lim, YS, Lee, SW, Tserendejid, Z, et al. (2015) Prevalence of osteoporosis according to nutrient and food group intake levels in Korean postmenopausal women: using the 2010 Korea National Health and Nutrition Examination Survey Data. Nutr Res Pract 9, 539546.
15. Langsetmo, L, Poliquin, S, Hanley, DA, et al. (2010) Dietary patterns in Canadian men and women ages 25 and older: relationship to demographics, body mass index, and bone mineral density. BMC Musculoskelet Disord 11, 20.
16. McNaughton, SA, Wattanapenpaiboon, N, Wark, JD, et al. (2011) An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J Nutr 141, 15161523.
17. van den Hooven, EH, Ambrosini, GL, Huang, R-C, et al. (2015) Identification of a dietary pattern prospectively associated with bone mass in Australian young adults. Am J Clin Nutr 102, 10351043.
18. Grant, JF, Taylor, AW, Ruffin, RE, et al. (2009) Cohort profile: The North West Adelaide Health Study (NWAHS). Int J Epidemiol 38, 14791486.
19. Grande, ED & Taylor, AW (2010) Sampling and coverage issues of telephone surveys used for collecting health information in Australia: results from a face-to-face survey from 1999 to 2008. BMC Med Res Methodol 10, 111.
20. Giles, GG & Ireland, PD (1996) Dietary Questionnaire for Epidemiological Studies (Version 2). Melbourne: The Cancer Council Victoria.
21. Schoenaker, DAJM, Dobson, AJ, Soedamah-Muthu, SS, et al. (2013) Factor analysis is more appropriate to identify overall dietary patterns associated with diabetes when compared with treelet transform analysis. J Nutr 143, 392398.
22. National Heart Foundation, Australian Institute of Health and Welfare (1989) Risk Factor Prevalence Study: Survey no. 3. Canberra: NHF.
23. World Health Organization (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee, WHO Technical Report Series no. 854. Geneva: WHO.
24. Australian Bureau of Statistics (1995) National nutrition and physical activity survey questionnaire. Canberra: ABS. http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/4363.0.55.0012011-13?OpenDocument (accessed Janaury 2016).
25. D’Onise, R, Shanahan, EM, Gill, T, et al. (2010) Does leisure time physical activity protect against shoulder pain at work? Occup Med 60, 383388.
26. Weiss, BD, Mays, MZ, Martz, W, et al. (2005) Quick assessment of literacy in primary care: the newest vital sign. Ann Fam Med 3, 514522.
27. Baker, DW, Williams, MV, Parker, RM, et al. (1999) Development of a brief test to measure functional health literacy. Patient Edu Coun 38, 3342.
28. Appleton, SL, Seaborn, CJ, Visvanathan, R, et al. (2013) Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study. Diabetes Care 36, 23882394.
29. World Health Organization (1994) Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO Study Group, World Health Organization Technical Report Series no. 843. Geneva: WHO.
30. Goldberg, G, Black, A, Jebb, S, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
31. Black, AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes 24, 11191130.
32. Barros, AJ & Hirakata, VN (2003) Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 3, 21.
33. de Jonge, EA, Kiefte-de Jong, JC, de Groot, LC, et al. (2015) Development of a food group-based diet score and its association with bone mineral density in the elderly: the Rotterdam study. Nutrients 7, 69746990.
34. Shin, S, Sung, J & Joung, H (2015) A fruit, milk and whole grain dietary pattern is positively associated with bone mineral density in Korean healthy adults. Eur J Clin Nutri 69, 442448.
35. Bowes, A, Church, H & Pennington, J (1994) Bowes and Church’s Food Values of Portions Commonly Used. Philadelphia, PA: Lippincott.
36. Chen Y-m, Ho S, & Lam, S (2010) Higher sea fish intake is associated with greater bone mass and lower osteoporosis risk in postmenopausal Chinese women. Osteoporos Int 21, 939946.
37. Shin, S & Joung, H (2013) A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women. Br J Nutr 110, 19261933.
38. Tucker, KL (2009) Osteoporosis prevention and nutrition. Curr Osteoporos Rep 7, 111117.
39. Maurer, M, Riesen, W, Muser, J, et al. (2003) Neutralization of western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am J Physiol Renal Physiol 284, F32 F40.
40. Macdonald, HM (2007) Influence of organic salts of potassium on bone health: possible mechanisms of action for the role of fruit and vegetables. Int Congress Ser 1297, 268281.
41. Hamidi, M, Boucher, BA, Cheung, AM, et al. (2011) Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. Osteoporos Int 22, 16811693.
42. Taylor, AW, Dal Grande, E, Wu, J, et al. (2014) Ten-year trends in major lifestyle risk factors using an ongoing population surveillance system in Australia. Popul Health Metrics 12, 1.
43. Willett, W (2013) Nutritional Epidemiology. New York: OUP.
44. de Franca, NA, Camargo, MB, Lazaretti-Castro, M, et al. (2015) Dietary patterns and bone mineral density in Brazilian postmenopausal women with osteoporosis: a cross-sectional study. Eur J Clin Nutr 70, 8590.
45. Amato, D, Maravilla, A, Montoya, C, et al. (1998) Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Rev Invest Clin 50, 185189.
46. Tucker, KL, Morita, K, Qiao, N, et al. (2006) Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: the Framingham Osteoporosis Study. Am J Clin Nutr 84, 936942.
47. Jankovic, N, Steppel, MT, Kampman, E, et al. (2014) Stability of dietary patterns assessed with reduced rank regression; the Zutphen Elderly Study. Nutr J 13, 19.
48. Zantinge, EM, van den Berg, M, Smit, HA, et al. (2014) Retirement and a healthy lifestyle: opportunity or pitfall? A narrative review of the literature. Eur J Public Health 24, 433439.
49. Helldan, A, Lallukka, T, Rahkonen, O, et al. (2012) Changes in healthy food habits after transition to old age retirement. Eur J Public Health 22, 582586.
50. Smith, W, Mitchell, P, Reay, EM, et al. (1998) Validity and reproducibility of a self-administered food frequency questionnaire in older people. Aust N Z J Public Health 22, 456463.
51. Newby, PK, Weismayer, C, Åkesson, A, et al. (2006) Long-term stability of food patterns identified by use of factor analysis among Swedish women. J Nutr 136, 626633.

Keywords

Type Description Title
WORD
Supplementary materials

Melaku supplementary material
Table S1

 Word (19 KB)
19 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed