Skip to main content Accessibility help
×
Home

The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes

  • Qian Zhang (a1), Guansheng Ma (a1), Heather Greenfield (a2), Kun Zhu (a2), Xueqin Du (a2), Leng Huat Foo (a2), Xiaoqi Hu (a1) and David R. Fraser (a2)...

Abstract

To assess the association between protein intakes and bone mass accrual in girls, data were analysed for 757 pre-pubertal girls (mean age 10·1 years) in urban Beijing, China, who participated in a 5-year study including 2 years of milk supplementation (intervention groups only) and 3 years of follow-up study. At 0, 12, 24, 48 and 60 months from the baseline, bone mass of the proximal or distal forearm (PF or DF) and total body (TB) was measured with dual energy X-ray absorptiometry; dietary intakes were assessed by a 3-d food record (including two weekdays and one weekend day). Linear mixed models were used and continuous variables were logarithm transformed. The mean longitudinal Ca intake (432–675 mg/d on average) positively influenced bone mineral content (BMC) at TB, PF and DF after controlling for baseline bone mass and other possible confounders. However, negative associations were observed between protein intake (55·9–61·0 g/d on average) and BMC accrual at TB, PF or DF (β = − 1·92, − 10·2 or − 4·82, respectively, P < 0·01) after adjustment. When protein intake was considered according to animal or plant food sources, protein from animal foods, particularly meat, had significant negative effects on BMC accrual at DF or PF after adjustment. It was concluded that higher protein intake, especially from animal foods, appeared to have a negative effect on bone mass accrual in Chinese pubertal girls with low Ca intakes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Qian Zhang, fax +86 10 8313 2021, email zhangq-99@263.net

References

Hide All
1Zhao, D, Wu, H & Liu, Z (2004) The epidemiology of osteoporosis in China. Chin J Osteoporos 10, 614618.
2Nguyen, TV, Maynard, LM, Towne, B, et al. (2001) Sex differences in bone mass acquisition during growth: the Fels longitudinal study. J Clin Densitom 4, 147157.
3Bachrach, L (2001) Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab 12, 2228.
4Fässler, A & Bonjour, J (1995) Osteoporosis as a pediatric problem. Pediatr Clin North Am 42, 811824.
5Ilich, J, Badenhop, N & Matkovic, V (1996) Primary prevention of osteoporosis: pediatric approach to disease of the elderly. Womens Health Issues 6, 194203.
6Goulding, A, Cannan, R, Williams, S, et al. (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13, 143148.
7Heaney, RP, Abrams, S, Dawson-Hughes, B, et al. (2000) Peak bone mass. Osteoporos Int 11, 9851009.
8Zhai, F & Yang, X (2006) Report of China National Nutrition and Health Survey in 2002 II: Dietary Intake. Beijing: People's Health Publishing House.
9Chinese Nutrition Society (2000) Chinese DRIs. Beijing: Chinese Light Industry Press.
10Lee, WTK, Cheng, JCY, Jiang, J, et al. (2002) Calcium absorption measured by stable calcium isotopes (42Ca & 44Ca) among northern Chinese adolescents with low vitamin D status. J Orthopaed Surg 10, 6166.
11Abrams, S, Griffin, I, Hicks, P, et al. (2004) Pubertal girls only partially adapt to low dietary calcium intakes. J Bone Miner Res 19, 759763.
12Alexy, U, Remer, T, Manz, F, et al. (2005) Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr 82, 11071114.
13Abelow, B, Holford, T & Insogna, K (1992) Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int 50, 1418.
14Sebastian, A, Harris, S, Ottaway, J, et al. (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330, 17761781.
15Hunt, JR, Johnson, LK & Roughead, ZF (2009) Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr 89, 13571365.
16Munger, RG, Cerhan, JR & Chiu, BC-H (1999) Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr 69, 147152.
17Bounds, W, Skinner, J, Carruth, BR, et al. (2005) The relationship of dietary and lifestyle factors to bone mineral indexes in children. J Am Diet Assoc 105, 735741.
18Du, X, Zhu, K, Trube, A, et al. (2004) School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr 92, 159168.
19Zhu, K, Zhang, Q, Foo, LH, et al. (2006) Growth, bone mass, and vitamin D status of Chinese adolescent girls 3 y after withdrawal of milk supplementation. Am J Clin Nutr 83, 714721.
20Institute of Nutrition and Food Hygiene (1991) Food Composition. Beijing: People's Health Publishing House.
21Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects no. 41. London: HM Stationery Office.
22He, W, Du, X & Greenfield, H (1997) CAVD, A Survey System using Epi Info. Beijing: Chinese Academy of Preventive Medicine.
23Liu, A, Ma, G, Zhang, Q, et al. (2003) The reliability and validity of a 7-day physical activity questionnaire for elementary students. Chin J Epidemiol 24, 901904.
24Ainsworth, B, Haskell, W, Leon, A, et al. (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25, 180.
25Ainsworth, B, Haskell, W, Whitt, M, et al. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32, S498S504.
26Tanner, J (1962) Growth at Adolescence, 2nd ed.Oxford: Blackwell Scientific Publications.
27Kalkwarf, H, Khoury, J, Bean, J, et al. (2004) Vitamin K, bone turnover, and bone mass in girls. Am J Clin Nutr 80, 10751080.
28Cole, T (2000) Sympercents: symmetric percentage differences on the 100 log(e) scale simplify the presentation of log transformed data. Stat Med 19, 31093125.
29Wang, DL (2005) Report of China National Nutrition and Health Survey in 2002. I: Total Report. Beijing: People's Health Publishing House.
30Matkovic, V, Badenhop-Stevens, N, Ha, E-J, et al. (2004) Nutrition and Bone Health in Children and Adolescents. Totowa, NJ: Humana Press, Inc.
31O'Brien, K, Abrams, S, Liang, L, et al. (1996) Increased efficiency of calcium absorption during short periods of inadequate calcium intake in girls. Am J Clin Nutr 63, 579583.
32Matkovic, V, Goel, PK, Badenhop-Stevens, NE, et al. (2005) Calcium supplementation and bone mineral density in females from childhood to young adulthood: a randomized controlled trial. Am J Clin Nutr 81, 175188.
33Kerstetter, J, O'Brien, K, Caseria, D, et al. (2005) The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab 90, 2631.
34Cadogan, J, Eastell, R, Jones, N, et al. (1997) Milk intake and bone mineral acquisition in adolescent girls: randomized, controlled intervention trial. BMJ 315, 12551260.
35Barzel, U & Massey, L (1998) Excess dietary protein can adversely affect bone. J Nutr 128, 10511053.
36Fenton, TR, Eliasziw, M, Lyon, AW, et al. (2008) Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. Am J Clin Nutr 88, 11591166.
37Remer, T (2000) Influence of diet on acid–base balance. Semin Dial 13, 221226.
38Kerstetter, J, Mitnick, M, Gundberg, C, et al. (1999) Changes in bone turnover in young women consuming different levels of dietary protein. J Clin Endocrinol Metab 84, 10521055.
39Alexy, U, Kersting, M & Remer, T (2007) Potential renal acid load in the diet of children and adolescents: impact of food groups, age and time trends. Public Health Nutr 11, 300306.
40Heaney, R (1993) Protein intake and the calcium economy. J Am Diet Assoc 93, 12591260.
41Heaney, R (1993) Nutritional factors in osteoporosis. Annu Rev Nutr 13, 287316.
42Heaney, R (1998) Excess dietary protein may not adversely affect bone. J Nutr 128, 10541057.
43Weaver, C, Proulx, W & Heaney, R (1999) Choices for achieving adequate dietary calcium with a vegetarian diet. Am J Clin Nutr 70, 543S548S.
44Vatanparast, H, Bailey, DA, Baxter-Jones, ADG, et al. (2007) The effects of dietary protein on bone mineral mass in young adults may be modulated by adolescent calcium intake. J Nutr 137, 26742679.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed