Skip to main content Accessibility help

Associations between social vulnerabilities and dietary patterns in European children: the Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS (IDEFICS) study

  • Isabel Iguacel (a1) (a2) (a3), Juan M. Fernández-Alvira (a1) (a4), Karin Bammann (a5) (a6), Bart De Clercq (a7), Gabriele Eiben (a8), Wencke Gwozdz (a9), Dénes Molnar (a10), Valeria Pala (a11), Stalo Papoutsou (a12), Paola Russo (a13), Toomas Veidebaum (a14), Maike Wolters (a6), Claudia Börnhorst (a6) and Luis A. Moreno (a1) (a2) (a3) (a15)...


Socio-economic inequalities in childhood can determine dietary patterns, and therefore future health. This study aimed to explore associations between social vulnerabilities and dietary patterns assessed at two time points, and to investigate the association between accumulation of vulnerabilities and dietary patterns. A total of 9301 children aged 2–9 years participated at baseline and 2-year follow-up examinations of the Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS study. In all, three dietary patterns were identified at baseline and follow-up by applying the K-means clustering algorithm based on a higher frequency of consumption of snacks and fast food (processed), sweet foods and drinks (sweet), and fruits and vegetables (healthy). Vulnerable groups were defined at baseline as follows: children whose parents lacked a social network, children from single-parent families, children of migrant origin and children with unemployed parents. Multinomial mixed models were used to assess the associations between social vulnerabilities and children’s dietary patterns at baseline and follow-up. Children whose parents lacked a social network (OR 1·31; 99 % CI 1·01, 1·70) and migrants (OR 1·45; 99 % CI 1·15, 1·83) were more likely to be in the processed cluster at baseline and follow-up. Children whose parents were homemakers (OR 0·74; 99 % CI 0·60, 0·92) were less likely to be in the processed cluster at baseline. A higher number of vulnerabilities was associated with a higher probability of children being in the processed cluster (OR 1·78; 99 % CI 1·21, 2·62). Therefore, special attention should be paid to children of vulnerable groups as they present unhealthier dietary patterns.


Corresponding author

* Corresponding author: I. Iguacel, email


Hide All

These authors contributed equally and share the last authorship



Hide All
1. Viner, RM, Ozer, EM, Denny, S, et al. (2012) Adolescence and the social determinants of health. Lancet 379, 16411652.
2. Elgar, FJ, Pfortner, TK, Moor, I, et al. (2015) Socioeconomic inequalities in adolescent health 2002-2010: a time-series analysis of 34 countries participating in the Health Behaviour in School-aged Children study. Lancet 385, 20882095.
3. Bleich, SN, Jarlenski, MP, Bell, CN, et al. (2012) Health inequalities: trends, progress, and policy. Annu Rev Public Health 33, 740.
4. Gupta, RP, de Wit, ML & McKeown, D (2007) The impact of poverty on the current and future health status of children. Paediatr Child Health 12, 667672.
5. Pampel, FC, Krueger, PM & Denney, JT (2010) Socioeconomic disparities in health behaviors. Annu Rev Sociol 36, 349370.
6. Aldabe, B, Anderson, R, Lyly-Yrjanainen, M, et al. (2011) Contribution of material, occupational, and psychosocial factors in the explanation of social inequalities in health in 28 countries in Europe. J Epidemiol Community Health 65, 11231131.
7. Skalicka, V, van Lenthe, F, Bambra, C, et al. (2009) Material, psychosocial, behavioural and biomedical factors in the explanation of relative socio-economic inequalities in mortality: evidence from the HUNT study. Int J Epidemiol 38, 12721284.
8. Moor, I, Rathmann, K, Stronks, K, et al. (2014) Psychosocial and behavioural factors in the explanation of socioeconomic inequalities in adolescent health: a multilevel analysis in 28 European and North American countries. J Epidemiol Community Health 68, 912921.
9. Due, P, Krolner, R, Rasmussen, M, et al. (2011) Pathways and mechanisms in adolescence contribute to adult health inequalities. Scand J Public Health 39, 6278.
10. Johansson, L, Thelle, DS, Solvoll, K, et al. (1999) Healthy dietary habits in relation to social determinants and lifestyle factors. Br J Nutr 81, 211220.
11. Wang, MC, Kim, S, Gonzalez, AA, et al. (2007) Socioeconomic and food-related physical characteristics of the neighbourhood environment are associated with body mass index. J Epidemiol Community Health 61, 491498.
12. James, WP, Nelson, M, Ralph, A, et al. (1997) Socioeconomic determinants of health. The contribution of nutrition to inequalities in health. BMJ 314, 15451549.
13. Shahar, D, Shai, I, Vardi, H, et al. (2005) Diet and eating habits in high and low socioeconomic groups. Nutrition 21, 559566.
14. Dekker, LH, Nicolaou, M, van Dam, RM, et al. (2015) Socio-economic status and ethnicity are independently associated with dietary patterns: the HELIUS-Dietary Patterns study. Food Nutr Res 59, 26317.
15. Vereecken, CA, Inchley, J, Subramanian, SV, et al. (2005) The relative influence of individual and contextual socio-economic status on consumption of fruit and soft drinks among adolescents in Europe. Eur J Public Health 15, 224232.
16. Vereecken, C, Legiest, E, De Bourdeaudhuij, I, et al. (2009) Associations between general parenting styles and specific food-related parenting practices and children’s food consumption. Am J Health Promot 23, 233240.
17. Kell, KP, Judd, SE, Pearson, KE, et al. (2015) Associations between socio-economic status and dietary patterns in US black and white adults. Br J Nutr 113, 17921799.
18. Fung, TT, Rimm, EB, Spiegelman, D, et al. (2001) Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 73, 6167.
19. Fernandez-Alvira, JM, Bornhorst, C, Bammann, K, et al. (2015) Prospective associations between socio-economic status and dietary patterns in European children: the Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants (IDEFICS) Study. Br J Nutr 113, 517525.
20. Parikka, S, Maki, P, Levalahti, E, et al. (2015) Associations between parental BMI, socioeconomic factors, family structure and overweight in Finnish children: a path model approach. BMC Public Health 15, 271.
21. Marmot, M (2005) Social determinants of health inequalities. Lancet 365, 10991104.
22. Formisano, A, Hunsberger, M, Bammann, K, et al. (2014) Family structure and childhood obesity: results of the IDEFICS project. Public Health Nutr 17, 23072315.
23. Chen, AY & Escarce, JJ (2010) Family structure and childhood obesity, Early Childhood Longitudinal Study – Kindergarten Cohort. Prev Chronic Dis 7, A50.
24. Oliveira, AJ, Rostila, M, de Leon, AP, et al. (2013) The influence of social relationships on obesity: sex differences in a longitudinal study. Obesity (Silver Spring) 21, 15401547.
25. Hope, S, Pearce, A, Whitehead, M, et al. (2015) Parental employment during early childhood and overweight at 7-years: findings from the UK Millennium Cohort Study. BMC Obes 2, 33.
26. Strauss, RS & Knight, J (1999) Influence of the home environment on the development of obesity in children. Pediatrics 103, e85.
27. Nobre, LN, Lamounier, JA & Franceschini, SC (2012) Preschool children dietary patterns and associated factors. J Pediatr (Rio J) 88, 129136.
28. Stewart, SD & Menning, CL (2009) Family structure, nonresident father involvement, and adolescent eating patterns. J Adolesc Health 45, 193201.
29. Conklin, AI, Forouhi, NG, Surtees, P, et al. (2014) Social relationships and healthful dietary behaviour: evidence from over-50s in the EPIC cohort, UK. Soc Sci Med 100, 167175.
30. Labree, LJ, van de Mheen, H, Rutten, FF, et al. (2011) Differences in overweight and obesity among children from migrant and native origin: a systematic review of the European literature. Obes Rev 12, e535547.
31. Gevers, DW, Kremers, SP, de Vries, NK, et al. (2016) Intake of energy-dense snack foods and drinks among Dutch children aged 7-12 years: how many, how much, when, where and which? Public Health Nutr 19, 8392.
32. Bammann, K, Gwozdz, W, Lanfer, A, et al. (2013) Socioeconomic factors and childhood overweight in Europe: results from the multi-centre IDEFICS study. Pediatr Obes 8, 112.
33. Gwozdz, W, Sousa-Poza, A, Reisch, LA, et al. (2015) Peer effects on obesity in a sample of European children. Econ Hum Biol 18, 139152.
34. Ahrens, W, Bammann, K, Siani, A, et al. (2011) The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes (Lond) 35, Suppl. 1, S3S15.
35. Lanfer, A, Hebestreit, A, Ahrens, W, et al. (2011) Reproducibility of food consumption frequencies derived from the Children’s Eating Habits Questionnaire used in the IDEFICS study. Int J Obes (Lond) 35, Suppl. 1, S61S68.
36. Bel-Serrat, S, Mouratidou, T, Pala, V, et al. (2014) Relative validity of the Children’s Eating Habits Questionnaire-food frequency section among young European children: the IDEFICS Study. Public Health Nutr 17, 266276.
37. Huybrechts, I, Bornhorst, C, Pala, V, et al. (2011) Evaluation of the Children’s Eating Habits Questionnaire used in the IDEFICS study by relating urinary calcium and potassium to milk consumption frequencies among European children. Int J Obes (Lond) 35, Suppl. 1, S69S78.
38. Cole, TJ, Freeman, JV & Preece, MA (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med 17, 407429.
39. Cole, TJ & Lobstein, T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediat Obes 7, 284294.
40. UNESCO (2006) ISCED 1997 International Standard Classification of Education [UNESCO Institute for Statistics, editor]. Montreal: UNESCO.
41. Harrison, E & Rose, D (2006) The European Socio-economic Classification (ESeC) User Guide. Colchester, UK: University of Essex.
42. Mechanic, D & Tanner, J (2007) Vulnerable people, groups, and populations: societal view. Health Aff (Millwood) 26, 12201230.
43. Ranjit, N, Wilkinson, AV, Lytle, LM, et al. (2015) Socioeconomic inequalities in children’s diet: the role of the home food environment. Int J Behav Nutr Phys Act 12, Suppl. 1, S4.
44. Kim, S, Egerter, S, Cubbin, C, et al. (2007) Potential implications of missing income data in population-based surveys: an example from a postpartum survey in California. Public Health Rep 122, 753763.
45. Fernandez-Alvira, JM, Bammann, K, Pala, V, et al. (2014) Country-specific dietary patterns and associations with socioeconomic status in European children: the IDEFICS study. Eur J Clin Nutr 68, 811821.
46. Neumark-Sztainer, D, Hannan, PJ, Story, M, et al. (2003) Family meal patterns: associations with sociodemographic characteristics and improved dietary intake among adolescents. J Am Diet Assoc 103, 317322.
47. Sweeting, H & West, P (2005) Dietary habits and children’s family lives. J Hum Nutr Diet 18, 9397.
48. Baek, YJ, Paik, HY & Shim, JE (2014) Association between family structure and food group intake in children. Nutr Res Pract 8, 463468.
49. Gilbert, PA & Khokhar, S (2008) Changing dietary habits of ethnic groups in Europe and implications for health. Nutr Rev 66, 203215.
50. Villa, JK, Silva, AR, Santos, TS, et al. (2015) [Dietary patterns of children and socioeconomical, behavioral and maternal determinants]. Rev Paul Pediatr 33, 303310.
51. Greve, J (2011) New results on the effect of maternal work hours on children’s overweight status: does the quality of child care matter? Labour Econ 18, 579590.
52. Gwozdz, W, Sousa-Poza, A, Reisch, LA, et al. (2013) Maternal employment and childhood obesity – a European perspective. J Health Econ 32, 728742.
53. Crepinsek, MK & Burstein, NR (2004) Maternal employment and Children’s nutrition. Electronic publications from the Food Assistance & Nutrition Research Program.
54. Bauer, KW, Hearst, MO, Escoto, K, et al. (2012) Parental employment and work-family stress: associations with family food environments. Soc Sci Med 75, 496504.
55. Rinaldi, AF, Macedo, CS, Mota, JF, et al. (2008) Feeding practices and physical inactivity contributions to childhood overweight. Rev Paul Pediatr 26, 271277.
56. Pala, V, Lissner, L, Hebestreit, A, et al. (2013) Dietary patterns and longitudinal change in body mass in European children: a follow-up study on the IDEFICS multicenter cohort. Eur J Clin Nutr 67, 10421049.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed