Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T12:11:20.272Z Has data issue: false hasContentIssue false

Associations of diet quality, food consumption, eating frequency and eating behaviour with dental caries experience in Finnish children: a 2-year longitudinal study

Published online by Cambridge University Press:  08 August 2022

Veera F. Virkkala*
Affiliation:
Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
Aino-Maija Eloranta
Affiliation:
Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
Anna Liisa Suominen
Affiliation:
Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
Anu Vierola
Affiliation:
Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
Tiina Ikävalko
Affiliation:
Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
Juuso Väistö
Affiliation:
Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
Santtu Mikkonen
Affiliation:
Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
Mirja Methuen
Affiliation:
Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
Ursula Schwab
Affiliation:
Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
Heli T. Viljakainen
Affiliation:
Folkhälsan Research Center, Helsinki, Finland Faculty of Medicine, University of Helsinki, Helsinki, Finland
Jukka Leinonen
Affiliation:
Department of Clinical Dentistry, UiT The Arctic University of Norway, Tromso, Norway
Matti Närhi
Affiliation:
Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
Timo A. Lakka
Affiliation:
Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
*
*Corresponding author: Veera F. Virkkala, email veervirk@student.uef.fi

Abstract

We examined cross-sectional and longitudinal associations of dietary factors with caries experience in a population sample of 487 children aged 6–9 years at baseline examinations of the Physical Activity and Nutrition in Children (PANIC) Study. Altogether, 406 of these children attended 2-year follow-up examinations. Food consumption and eating frequency were assessed using 4-day food records, diet quality using the Baltic Sea Diet Score (BSDS) and eating behaviour using the Children’s Eating Behavior Questionnaire. Caries experience was examined clinically. The cross-sectional associations of dietary factors with caries experience at baseline were analysed using linear regression and the longitudinal associations of dietary factors with a change in caries experience over follow-up using generalised mixed-effects regression adjusted for other risk factors. A higher consumption of high-fibre grain products (standardised regression coefficient β = −0·16, P = 0·003) and milk (β = −0·11, P = 0·025) and higher BSDS (β = −0·15, P = 0·007) were associated with lower caries experience, whereas a higher consumption of potatoes (β = 0·11, P = 0·048) and emotional overeating (β = 0·12, P = 0·025) were associated with higher caries experience. Higher snacking frequency (fixed coefficient β = 0·07, P = 0·033), desire to drink (β = 0·10, P = 0·046), slowness in eating (β = 0·12, P = 0·027) and food fussiness (β = 0·12, P = 0·018) were associated with higher caries experience, whereas enjoyment of food (β = −0·12, P = 0·034) and higher BSDS (β = −0·02, P = 0·051) were associated with lower caries experience.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Selwitz, RH, Ismail, AI & Pitts, NB (2007) Dental caries. Lancet 369, 5159.CrossRefGoogle ScholarPubMed
Pitts, NB, Zero, DT, Marsh, PD, et al. (2017) Dental caries. Nat Rev Dis Primers 3, 116.Google ScholarPubMed
Moynihan, PJ & Kelly, SAM (2014) Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J Dent Res 93, 818.CrossRefGoogle ScholarPubMed
Giacaman, RA (2018) Sugars and beyond. The role of sugars and the other nutrients and their potential impact on caries. Oral Dis 24, 11851197.CrossRefGoogle ScholarPubMed
Hancock, S, Zinn, C & Schofield, G (2020) The consumption of processed sugar- and starch-containing foods, and dental caries: a systematic review. Eur J Oral Sci 128, 467475.CrossRefGoogle ScholarPubMed
Lingström, P, van Houte, J & Kashket, S (2000) Food starches and dental caries. Crit Rev Oral Biol Med 11, 366380.CrossRefGoogle ScholarPubMed
Moynihan, P (2007) Foods and dietary factors that prevent dental caries. Quintessence Int 38, 320324.Google ScholarPubMed
Lin, HS, Lin, JR, Hu, SW, et al. (2014) Association of dietary calcium, phosphorus, and magnesium intake with caries status among schoolchildren. Kaohsiung J Med Sci 30, 206212.CrossRefGoogle ScholarPubMed
Gondivkar, SM, Gadbail, AR, Gondivkar, RS, et al. (2019) Nutrition and oral health. Dis Mon 65, 147154.CrossRefGoogle ScholarPubMed
Kanerva, N, Kaartinen, NE, Schwab, U, et al. (2014) The Baltic sea diet score: a tool for assessing healthy eating in Nordic countries. Public Health Nutr 17, 16971705.CrossRefGoogle Scholar
Kanerva, N, Kaartinen, NE, Schwab, U, et al. (2013) Adherence to the Baltic Sea diet consumed in the Nordic countries is associated with lower abdominal obesity. Br J Nutr 109, 520528.CrossRefGoogle Scholar
Jauhiainen, L, Suominen, AL, Kanerva, N, et al. (2016) Periodontal pocketing and gingival bleeding in relation to Nordic diet – results from a population-based survey. J Clin Periodontol 43, 10131023.CrossRefGoogle ScholarPubMed
Jauhiainen, LM, Ylöstalo, PV, Knuuttila, M, et al. (2020) Poor diet predicts periodontal disease development in 11-year follow-up study. Community Dent Oral Epidemiol 48, 143151.CrossRefGoogle ScholarPubMed
Wardle, J, Guthrie, CA, Sanderson, S, et al. (2001) Development of the children’s eating behaviour questionnaire. J Child Psychol Psychiatry 42, 963970.CrossRefGoogle ScholarPubMed
Shqair, AQ, dos Santos Motta, JV, da Silva, RA, et al. (2021) Children’s eating behaviour traits and dental caries. J Public Health Dent 82, 186193.CrossRefGoogle ScholarPubMed
Nembhwani, HV & Winnier, J (2020) Impact of problematic eating behaviour and parental feeding styles on early childhood caries. Int J Paediatr Dent 30, 619625.CrossRefGoogle ScholarPubMed
Scaglioni, S, De Cosmi, V, Ciappolino, V, et al. (2018) Factors influencing children’s eating behaviours. Nutrients 10, 706.CrossRefGoogle ScholarPubMed
Birch, L, Savage, JS & Ventura, A (2007) Influences on the development of children’s eating behaviours: from infancy to adolescence. Can J Diet Pract Res 68, s156.Google ScholarPubMed
Lakka, TA, Lintu, N, Väistö, J, et al. (2020) A 2 year physical activity and dietary intervention attenuates the increase in insulin resistance in a general population of children: the PANIC study. Diabetologia 63, 22702281.CrossRefGoogle Scholar
Löe, H (1967) The gingival index, the plaque index and the retention index systems. J Periodontol 38, 610616.CrossRefGoogle ScholarPubMed
Eloranta, AM, Lindi, V, Schwab, U, et al. (2012) Dietary factors associated with overweight and body adiposity in Finnish children aged 6–8 years: the PANIC Study. Int J Obes 36, 950955.CrossRefGoogle ScholarPubMed
Eloranta, AM, Venäläinen, T, Soininen, S, et al. (2016) Food sources of energy and nutrients in Finnish girls and boys 6–8 years of age – the PANIC study. Food Nutr Res 60, 32444.CrossRefGoogle ScholarPubMed
Eloranta, AM, Schwab, U, Venäläinen, T, et al. (2016) Dietary quality indices in relation to cardiometabolic risk among Finnish children aged 6–8 years – the PANIC study. Nutr Metab Cardiovasc Dis 26, 833841.CrossRefGoogle ScholarPubMed
Jalkanen, H, Lindi, V, Schwab, U, et al. (2017) Eating behaviour is associated with eating frequency and food consumption in 6–8 year-old children: the Physical Activity and Nutrition in Children (PANIC) study. Appetite 114, 2837.CrossRefGoogle ScholarPubMed
Väistö, J, Haapala, EA, Viitasalo, A, et al. (2019) Longitudinal associations of physical activity and sedentary time with cardiometabolic risk factors in children. Scand J Med Sci Sports 29, 113123.Google ScholarPubMed
Saari, A, Sankilampi, U, Hannila, ML, et al. (2011) New Finnish growth references for children and adolescents aged 0 to 20 years: length/height-for-age, weight-for-length/height, and body mass index-for-age. Ann Med 43, 235248.CrossRefGoogle Scholar
Dietz, WH & Bellizzi, MC (1999) Introduction: the use of body mass index to assess obesity in children. Am J Clin Nutr 70, 123S125S.CrossRefGoogle ScholarPubMed
Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J 320, 12401243.CrossRefGoogle ScholarPubMed
Marshall, WA & Tanner, JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44, 291303.CrossRefGoogle ScholarPubMed
Marshall, WA & Tanner, JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45, 1323.CrossRefGoogle ScholarPubMed
André Kramer, A-C, Petzold, M, Hakeberg, M, et al. (2018) Multiple socioeconomic factors and dental caries in Swedish children and adolescents. Caries Res 52, 4250.Google ScholarPubMed
Modéer, T, Blomberg, CC, Wondimu, B, et al. (2010) Association between obesity, flow rate of whole saliva, and dental caries in adolescents. Obesity 18, 23672373.CrossRefGoogle ScholarPubMed
Tseveenjav, B, Suominen, AL, Hausen, H, et al. (2011) The role of sugar, xylitol, toothbrushing frequency, and use of fluoride toothpaste in maintenance of adults’ dental health: findings from the Finnish National Health 2000 Survey. Eur J Oral Sci 119, 4047.Google ScholarPubMed
Moynihan, P & Petersen, PE (2004) Diet, nutrition and the prevention of dental diseases. Public Health Nutr 7, 201226.CrossRefGoogle ScholarPubMed
Anderson, AC, Rothballer, M, Altenburger, MJ, et al. (2020) Long-term fluctuation of oral biofilm microbiota following different dietary phases. Appl Environ Microbiol 86, e0142120.CrossRefGoogle ScholarPubMed
Willerhausen, B, Blettner, M, Kasaj, A, et al. (2007) Association between body mass index and dental health in 1290 children of elementary schools in a German city. Clin Oral Investig 11, 195200.CrossRefGoogle Scholar
Kennedy, E, Ohls, J, Carlson, S, et al. (1995) The Healthy Eating Index: design and applications. J Am Diet Assoc 95, 11031108.CrossRefGoogle ScholarPubMed
Nunn, ME, Braunstein, NS, Kaye, EAK, et al. (2009) Healthy eating index is a predictor of early childhood caries. J Dent Res 88, 361.Google ScholarPubMed
Coogan, MM, MacKeown, JM, Galpin, JS, et al. (2008) Microbiological impressions of teeth, saliva and dietary fibre can predict caries activity. J Dent 36, 892899.CrossRefGoogle ScholarPubMed
Laine, MA, Tolvanen, M, Pienihäkkinen, K, et al. (2014) The effect of dietary intervention on paraffin-stimulated saliva and dental health of children participating in a randomised controlled trial. Arch Oral Biol 59, 217225.CrossRefGoogle Scholar
Piirainen, T, Laitinen, K & Isolauri, E (2007) Impact of national fortification of fluid milks and margarines with vitamin D on dietary intake and serum 25-hydroxyvitamin D concentration in 4-year-old children. Eur J Clin Nutr 61, 123128.CrossRefGoogle ScholarPubMed
Soininen, S, Eloranta, AM, Lindi, V, et al. (2016) Determinants of serum 25-hydroxyvitamin D concentration in Finnish children: the Physical Activity and Nutrition in Children (PANIC) study. Br J Nutr 115, 10801091.CrossRefGoogle ScholarPubMed
Hujoel, PP (2013) Vitamin D and dental caries in controlled clinical trials: systematic review and meta-analysis. Nutr Rev 71, 8897.CrossRefGoogle ScholarPubMed
Signori, C, Hartwig, AD, Silva-Júnior, IFD, et al. (2018) The role of human milk and sucrose on cariogenicity of microcosm biofilms. Braz Oral Res 32, e109.CrossRefGoogle ScholarPubMed
Ricomini Filho, AP, de Assis, ACM, Costa Oliveira, BE, et al. (2021) Cariogenic potential of human and bovine milk on enamel demineralization. Caries Res 55, 260267.CrossRefGoogle ScholarPubMed
Peres, RC, Coppi, LC, Volpato, MC, et al. (2009) Cariogenic potential of cows’, human and infant formula milks and effect of fluoride supplementation. Br J Nutr 101, 376382.CrossRefGoogle ScholarPubMed
Camire, ME, Kubow, S & Donnelly, DJ (2009) Potatoes and human health. Crit Rev Food Sci Nutr 49, 823840.CrossRefGoogle ScholarPubMed
Ribeiro, CC, Tabchoury, CPM, del Bel Cury, AA, et al. (2005) Effect of starch on the cariogenic potential of sucrose. Br J Nutr 94, 4450.CrossRefGoogle ScholarPubMed
Johansson, I, Holgerson, PL, Kressin, NR, et al. (2010) Snacking habits and caries in young children. Caries Res 44, 421430.CrossRefGoogle ScholarPubMed
Alm, A, Fåhraeus, C, Wendt, LK, et al. (2008) Body adiposity status in teenagers and snacking habits in early childhood in relation to approximal caries at 15 years of age. Int J Paediatr Dent 18, 189196.CrossRefGoogle ScholarPubMed
Braet, C & van Strien, T (1997) Assessment of emotional, externally induced and restrained eating behaviour in nine to twelve-year-old obese and non-obese children. Behav Res Ther 35, 863873.CrossRefGoogle ScholarPubMed
Cooke, LJ & Wardle, J (2005) Age and gender differences in children’s food preferences. Br J Nutr 93, 741746.CrossRefGoogle ScholarPubMed
Chung, A, Backholer, K, Zorbas, C, et al. (2021) Factors influencing sweet drink consumption among preschool-age children: a qualitative analysis. Health Promot J Austr 32, 96106.CrossRefGoogle ScholarPubMed
Sweetman, C, Wardle, J & Cooke, L (2008) Soft drinks and ‘desire to drink’ in preschoolers. Int J Behav Nutr Phys Act 5, 60.CrossRefGoogle ScholarPubMed
Gustafsson, BE, Quensel, CE, Lanke, LS, et al. (1954) The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand 11, 232364.CrossRefGoogle Scholar
Kutbi, HA (2021) Picky eating in school-aged children: sociodemographic determinants and the associations with dietary intake. Nutrients 13, 2518.CrossRefGoogle ScholarPubMed
Anandakrishna, L, Bhargav, N, Hegde, A, et al. (2014) Problematic eating and its association with early childhood caries among 46–71-month-old children using Children’s Eating Behavior Questionnaire (CEBQ): a cross sectional study. Indian J Dent Res 25, 602606.Google ScholarPubMed
Viitasalo, A, Eloranta, AM, Lintu, N, et al. (2016) The effects of a 2-year individualised and family-based lifestyle intervention on physical activity, sedentary behavior and diet in children. Prev Med 87, 8188.CrossRefGoogle ScholarPubMed
Meyer-Lueckel, H & Paris, S (2016) When and how to intervene in the caries process. Oper Dent 41, S35S47.CrossRefGoogle ScholarPubMed
Moradi, G, Mohamadi Bolbanabad, A, Moinafshar, A, et al. (2019) Evaluation of oral health status based on the decayed, missing and filled teeth (Dmft) index. Iran J Public Health 48, 20502057.Google ScholarPubMed
Alm, A, Wendt, LK, Koch, G, et al. (2012) Caries in adolescence – influence from early childhood. Community Dent Oral Epidemiol 40, 125133.CrossRefGoogle ScholarPubMed
Viana, V, Sinde, S & Saxton, JC (2008) Children’s Eating Behaviour Questionnaire: associations with BMI in Portuguese children. Br J Nutr 100, 445450.CrossRefGoogle ScholarPubMed
Crawford, PB, Obarzanek, E, Morrison, J, et al. (1994) Comparative advantage of 3-day food records over 24-hour recall and 5-day food frequency validated by observation of 9- and 10-year-old girls. J Am Diet Assoc 94, 626630.CrossRefGoogle ScholarPubMed