Skip to main content Accessibility help
×
×
Home

Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer

  • Digant Gupta (a1), Christopher G. Lis (a1), Sadie L. Dahlk (a1), Pankaj G. Vashi (a1), James F. Grutsch (a1) and Carolyn A. Lammersfeld (a1)...

Abstract

Bioelectrical impedance analysis (BIA) is an easy-to-use, non-invasive and reproducible technique to evaluate changes in body composition and nutritional status. Phase angle, determined by BIA, has been found to be a prognostic indicator in several chronic conditions, such as HIV, liver cirrhosis, chronic obstructive pulmonary disease and lung cancer, and in patients undergoing dialysis. The present study investigated the prognostic role of phase angle in advanced pancreatic cancer. We evaluated a case series of fifty-eight stage IV pancreatic cancer patients treated at Cancer Treatment Centers of America® at Midwestern Regional Medical Center (Zion, IL, USA) between January 2000 and July 2003. BIA was conducted on all patients using a bioelectrical impedance analyser that operated at 50kHz. The phase angle was calculated as capacitance (Xc)/resistance (R) and expressed in degrees. The Kaplan–Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle independent of other clinical and nutritional variables. The correlations between phase angle and traditional nutritional measures were evaluated using Pearson and Spearman coefficients. Patients with phase angle <5·0° had a median survival time of 6·3 (95% CI 3·5, 9·2) months (n 29), while those with phase angle >5·0° had a median survival time of 10·2 (95% CI 9·6, 10·8) months (n 29); this difference was statistically significant (P=0·02). The present study demonstrates that phase angle is a strong prognostic indicator in advanced pancreatic cancer. Similar studies in other cancer settings with larger sample sizes are needed to further validate the prognostic significance of the phase angle.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Digant Gupta, fax +1 847 746 4329, email digant.gupta@mrmc-ctca.com

References

Hide All
Adami, GF, Marinari, G, Gandolfo, P, Cocchi, F, Friedman, D & Scopinaro, N (1993) The use of bioelectrical impedance analysis for monitoring body composition changes during nutritional support. Surg Today 23, 867870.
Anon (1996) Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am J Clin Nutr 64, 524S532S.
Azcue, M, Fried, M & Pencharz, PB (1993) Use of bioelectrical impedance analysis to measure total body water in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 16, 440445.
Barbosa-Silva, MC, Barros, AJ, Post, CL, Waitzberg, DL & Heymsfield, SB (2003) Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment?. Nutrition 19, 422426.
Bauer, J, Capra, S & Ferguson, M (2002) Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur J Clin Nutr 56, 779785.
Baumgartner, RN, Chumlea, WC & Roche, AF (1988) Bioelectric impedance phase angle and body composition. Am J Clin Nutr 48, 1623.
Bohmig, M & Rosewicz, S (2004) Pancreatic carcinoma. Z Gastroenterol 42, 261268.
Carney, DE & Meguid, MM (2002) Current concepts in nutritional assessment. Arch Surg 137, 4245.
Chertow, GM, Lazarus, JM, Lew, NL, Ma, L & Lowrie, EG (1997) Bioimpedance norms for the hemodialysis population. Kidney Int 52, 16171621.
Chertow, GM, Lowrie, EG, Wilmore, DW, Gonzalez, J, Lew, NL, Ling, J, Leboff, MS, Gottlieb, MN, Huang, W & Zebrowski, B (1995) Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 6, 7581.
Desport, JC, Preux, PM, Bouteloup-Demange, C, Clavelou, P, Beaufrere, B, Bonnet, C & Couratier, PP (2003) Validation of bioelectrical impedance analysis in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 77, 11791185.
Detsky, AS, Baker, JP, Mendelson, RA, Wolman, SL, Wesson, DE & Jeejeebhoy, KN (1984) Evaluating the accuracy of nutritional assessment techniques applied to hospitalized patients: methodology and comparisons. J Parenter Enteral Nutr 8, 153159.
Dittmar, M (2003) Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol 122, 361370.
Elia, M (1993) The bioimpedance ‘craze’. Eur J Clin Nutr 47, 825827.
Faisy, C, Rabbat, A, Kouchakji, B & Laaban, JP (2000) Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med 26, 518525.
Fein, PA, Gundumalla, G, Jorden, A, Matza, B, Chattopadhyay, J & Avram, MM (2002) Usefulness of bioelectrical impedance analysis in monitoring nutrition status and survival of peritoneal dialysis patients. Adv Perit Dial 18, 195199.
Foster, KR & Lukaski, HC (1996) Whole-body impedance – what does it measure?. Am J Clin Nutr 64 388S – 396S
Fredrix, EW, Saris, WH, Soeters, PB, Wouters, EF, Kester, AD, von Meyenfeldt, MF & Westerterp, KR (1990) Estimation of body composition by bioelectrical impedance in cancer patients. Eur J Clin Nutr 44, 749752.
Higashiguchi, T, Kita, T, Noguchi, T, Kawarada, Y & Mizumoto, R (1988) Importance of nutritional management for the treatment of carcinoma of the pancreas. Gan To Kagaku Ryoho 15, 847853.
Lukaski, HC (1999) Requirements for clinical use of bioelectrical impedance analysis (BIA). Ann NY Acad Sci 873, 7276.
Lukaski, HC, Johnson, PE, Bolonchuk, WW & Lykken, GI (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41, 810817.
Maggiore, Q, Nigrelli, S, Ciccarelli, C, Grimaldi, C, Rossi, GA & Michelassi, C (1996) Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int 50, 21032108.
Marken Lichtenbelt, WD, Westerterp, KR, Wouters, L & Luijendijk, SC (1994) Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am J Clin Nutr 60, 159166.
Mushnick, R, Fein, PA, Mittman, N, Goel, N, Chattopadhyay, J & Avram, MM (2003) Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients. Kidney Int 83, S53S56.
Nagano, M, Suita, S & Yamanouchi, T (2000) The validity of bioelectrical impedance phase angle for nutritional assessment in children. J Pediatr Surg 35, 10351039.
Ott, M, Fischer, H, Polat, H, Helm, EB, Frenz, M, Caspary, WF & Lembcke, B (1995) Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol 9, 2025.
Ottery, F (1996) Supportive nutritional management of the patient with pancreatic cancer. Oncology (Huntingt) 10, 2632.
Pencharz, PB & Azcue, M (1996) Use of bioelectrical impedance analysis measurements in the clinical management of malnutrition. Am J Clin Nutr 64, 485S488S.
Pupim, LB, Kent, P & Ikizler, TA (1999) Bioelectrical impedance analysis in dialysis patients. Miner Electrolyte Metab 25, 400406.
Rocha Lima, CM & Centeno, B (2002) Update on pancreatic cancer. Curr Opin Oncol 14, 424430.
Sarhill, N, Mahmoud, FA, Christie, R & Tahir, A (2003) Assessment of nutritional status and fluid deficits in advanced cancer. Am J Hosp Palliat Care 20, 465473.
Schwenk, A, Beisenherz, A, Romer, K, Kremer, G, Salzberger, B & Elia, M (2000) Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am J Clin Nutr 72, 496501.
Schwenk, A, Ward, LC, Elia, M & Scott, GM (1998) Bioelectrical impedance analysis predicts outcome in patients with suspected bacteremia. Infection 26, 277282.
Selberg, O & Selberg, D (2002) Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 86, 509516.
Simons, JP, Schols, AM, Westerterp, KR, ten Velde, GP & Wouters, EF (1995) The use of bioelectrical impedance analysis to predict total body water in patients with cancer cachexia. Am J Clin Nutr 61, 741745.
Talluri, T, Lietdke, RJ, Evangelisti, A, Talluri, J & Maggia, G (1999) Fat-free mass qualitative assessment with bioelectric impedance analysis (BIA). Ann NY Acad Sci 873, 9498.
Toso, S, Piccoli, A, Gusella, M, Menon, D, Bononi, A, Crepaldi, G & Ferrazzi, E (2000) Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition 16, 120124.
Waitzberg, DL & Correia, MI (2003) Nutritional assessment in the hospitalized patient. Curr Opin Clin Nutr Metab Care 6, 531538.
Zarowitz, BJ & Pilla, AM (1989) Bioelectrical impedance in clinical practice. DICP 23, 548555.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed