Hostname: page-component-5d59c44645-lfgmx Total loading time: 0 Render date: 2024-02-23T14:30:43.575Z Has data issue: false hasContentIssue false

Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer

Published online by Cambridge University Press:  09 March 2007

Digant Gupta*
Affiliation:
Cancer Treatment Centers of America (CTCA) at Midwestern Regional Medical Center, 2520 Elisha Avenue, Zion, IL 60099, USA
Christopher G. Lis
Affiliation:
Cancer Treatment Centers of America (CTCA) at Midwestern Regional Medical Center, 2520 Elisha Avenue, Zion, IL 60099, USA
Sadie L. Dahlk
Affiliation:
Cancer Treatment Centers of America (CTCA) at Midwestern Regional Medical Center, 2520 Elisha Avenue, Zion, IL 60099, USA
Pankaj G. Vashi
Affiliation:
Cancer Treatment Centers of America (CTCA) at Midwestern Regional Medical Center, 2520 Elisha Avenue, Zion, IL 60099, USA
James F. Grutsch
Affiliation:
Cancer Treatment Centers of America (CTCA) at Midwestern Regional Medical Center, 2520 Elisha Avenue, Zion, IL 60099, USA
Carolyn A. Lammersfeld
Affiliation:
Cancer Treatment Centers of America (CTCA) at Midwestern Regional Medical Center, 2520 Elisha Avenue, Zion, IL 60099, USA
*
*Corresponding author: Dr Digant Gupta, fax +1 847 746 4329, email digant.gupta@mrmc-ctca.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bioelectrical impedance analysis (BIA) is an easy-to-use, non-invasive and reproducible technique to evaluate changes in body composition and nutritional status. Phase angle, determined by BIA, has been found to be a prognostic indicator in several chronic conditions, such as HIV, liver cirrhosis, chronic obstructive pulmonary disease and lung cancer, and in patients undergoing dialysis. The present study investigated the prognostic role of phase angle in advanced pancreatic cancer. We evaluated a case series of fifty-eight stage IV pancreatic cancer patients treated at Cancer Treatment Centers of America® at Midwestern Regional Medical Center (Zion, IL, USA) between January 2000 and July 2003. BIA was conducted on all patients using a bioelectrical impedance analyser that operated at 50kHz. The phase angle was calculated as capacitance (Xc)/resistance (R) and expressed in degrees. The Kaplan–Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle independent of other clinical and nutritional variables. The correlations between phase angle and traditional nutritional measures were evaluated using Pearson and Spearman coefficients. Patients with phase angle <5·0° had a median survival time of 6·3 (95% CI 3·5, 9·2) months (n 29), while those with phase angle >5·0° had a median survival time of 10·2 (95% CI 9·6, 10·8) months (n 29); this difference was statistically significant (P=0·02). The present study demonstrates that phase angle is a strong prognostic indicator in advanced pancreatic cancer. Similar studies in other cancer settings with larger sample sizes are needed to further validate the prognostic significance of the phase angle.

Type
Review Article
Copyright
Copyright © The Nutrition Society 2004

References

Adami, GF, Marinari, G, Gandolfo, P, Cocchi, F, Friedman, D & Scopinaro, N (1993) The use of bioelectrical impedance analysis for monitoring body composition changes during nutritional support. Surg Today 23, 867870.Google Scholar
Anon (1996) Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am J Clin Nutr 64, 524S532S.Google Scholar
Azcue, M, Fried, M & Pencharz, PB (1993) Use of bioelectrical impedance analysis to measure total body water in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 16, 440445.Google Scholar
Barbosa-Silva, MC, Barros, AJ, Post, CL, Waitzberg, DL & Heymsfield, SB (2003) Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment?. Nutrition 19, 422426.Google Scholar
Bauer, J, Capra, S & Ferguson, M (2002) Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur J Clin Nutr 56, 779785.Google Scholar
Baumgartner, RN, Chumlea, WC & Roche, AF (1988) Bioelectric impedance phase angle and body composition. Am J Clin Nutr 48, 1623.Google Scholar
Bohmig, M & Rosewicz, S (2004) Pancreatic carcinoma. Z Gastroenterol 42, 261268.Google Scholar
Carney, DE & Meguid, MM (2002) Current concepts in nutritional assessment. Arch Surg 137, 4245.Google Scholar
Chertow, GM, Lazarus, JM, Lew, NL, Ma, L & Lowrie, EG (1997) Bioimpedance norms for the hemodialysis population. Kidney Int 52, 16171621.Google Scholar
Chertow, GM, Lowrie, EG, Wilmore, DW, Gonzalez, J, Lew, NL, Ling, J, Leboff, MS, Gottlieb, MN, Huang, W & Zebrowski, B (1995) Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 6, 7581.Google Scholar
Desport, JC, Preux, PM, Bouteloup-Demange, C, Clavelou, P, Beaufrere, B, Bonnet, C & Couratier, PP (2003) Validation of bioelectrical impedance analysis in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 77, 11791185.Google Scholar
Detsky, AS, Baker, JP, Mendelson, RA, Wolman, SL, Wesson, DE & Jeejeebhoy, KN (1984) Evaluating the accuracy of nutritional assessment techniques applied to hospitalized patients: methodology and comparisons. J Parenter Enteral Nutr 8, 153159.Google Scholar
Dittmar, M (2003) Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol 122, 361370.Google Scholar
Elia, M (1993) The bioimpedance ‘craze’. Eur J Clin Nutr 47, 825827.Google Scholar
Faisy, C, Rabbat, A, Kouchakji, B & Laaban, JP (2000) Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med 26, 518525.Google Scholar
Fein, PA, Gundumalla, G, Jorden, A, Matza, B, Chattopadhyay, J & Avram, MM (2002) Usefulness of bioelectrical impedance analysis in monitoring nutrition status and survival of peritoneal dialysis patients. Adv Perit Dial 18, 195199.Google Scholar
Foster, KR & Lukaski, HC (1996) Whole-body impedance – what does it measure?. Am J Clin Nutr 64 388S – 396SGoogle Scholar
Fredrix, EW, Saris, WH, Soeters, PB, Wouters, EF, Kester, AD, von Meyenfeldt, MF & Westerterp, KR (1990) Estimation of body composition by bioelectrical impedance in cancer patients. Eur J Clin Nutr 44, 749752.Google Scholar
Higashiguchi, T, Kita, T, Noguchi, T, Kawarada, Y & Mizumoto, R (1988) Importance of nutritional management for the treatment of carcinoma of the pancreas. Gan To Kagaku Ryoho 15, 847853.Google Scholar
Lukaski, HC (1999) Requirements for clinical use of bioelectrical impedance analysis (BIA). Ann NY Acad Sci 873, 7276.Google Scholar
Lukaski, HC, Johnson, PE, Bolonchuk, WW & Lykken, GI (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41, 810817.Google Scholar
Maggiore, Q, Nigrelli, S, Ciccarelli, C, Grimaldi, C, Rossi, GA & Michelassi, C (1996) Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int 50, 21032108.Google Scholar
Marken Lichtenbelt, WD, Westerterp, KR, Wouters, L & Luijendijk, SC (1994) Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am J Clin Nutr 60, 159166.Google Scholar
Mushnick, R, Fein, PA, Mittman, N, Goel, N, Chattopadhyay, J & Avram, MM (2003) Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients. Kidney Int 83, S53S56.Google Scholar
Nagano, M, Suita, S & Yamanouchi, T (2000) The validity of bioelectrical impedance phase angle for nutritional assessment in children. J Pediatr Surg 35, 10351039.Google Scholar
Ott, M, Fischer, H, Polat, H, Helm, EB, Frenz, M, Caspary, WF & Lembcke, B (1995) Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol 9, 2025.Google Scholar
Ottery, F (1996) Supportive nutritional management of the patient with pancreatic cancer. Oncology (Huntingt) 10, 2632.Google Scholar
Pencharz, PB & Azcue, M (1996) Use of bioelectrical impedance analysis measurements in the clinical management of malnutrition. Am J Clin Nutr 64, 485S488S.Google Scholar
Pupim, LB, Kent, P & Ikizler, TA (1999) Bioelectrical impedance analysis in dialysis patients. Miner Electrolyte Metab 25, 400406.Google Scholar
Rocha Lima, CM & Centeno, B (2002) Update on pancreatic cancer. Curr Opin Oncol 14, 424430.Google Scholar
Sarhill, N, Mahmoud, FA, Christie, R & Tahir, A (2003) Assessment of nutritional status and fluid deficits in advanced cancer. Am J Hosp Palliat Care 20, 465473.Google Scholar
Schwenk, A, Beisenherz, A, Romer, K, Kremer, G, Salzberger, B & Elia, M (2000) Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am J Clin Nutr 72, 496501.Google Scholar
Schwenk, A, Ward, LC, Elia, M & Scott, GM (1998) Bioelectrical impedance analysis predicts outcome in patients with suspected bacteremia. Infection 26, 277282.Google Scholar
Selberg, O & Selberg, D (2002) Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 86, 509516.Google Scholar
Simons, JP, Schols, AM, Westerterp, KR, ten Velde, GP & Wouters, EF (1995) The use of bioelectrical impedance analysis to predict total body water in patients with cancer cachexia. Am J Clin Nutr 61, 741745.Google Scholar
Talluri, T, Lietdke, RJ, Evangelisti, A, Talluri, J & Maggia, G (1999) Fat-free mass qualitative assessment with bioelectric impedance analysis (BIA). Ann NY Acad Sci 873, 9498.Google Scholar
Toso, S, Piccoli, A, Gusella, M, Menon, D, Bononi, A, Crepaldi, G & Ferrazzi, E (2000) Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition 16, 120124.Google Scholar
Waitzberg, DL & Correia, MI (2003) Nutritional assessment in the hospitalized patient. Curr Opin Clin Nutr Metab Care 6, 531538.Google Scholar
Zarowitz, BJ & Pilla, AM (1989) Bioelectrical impedance in clinical practice. DICP 23, 548555.Google Scholar