Skip to main content Accessibility help
×
Home

Body composition of lactating women determined by anthropometry and deuterium dilution

  • William W. Wong (a1), Nancy F. Butte (a2), E. O'brian Smith (a2), Cutberto Garza (a2) and Peter D. Klein (a2)...

Abstract

1. Body fat, fat-free mass and total body water of ten lactating women were estimated from deuterium-dilution spaces and from skinfold thickness measurements. Deuterium-dilution spaces were calculated from the 6 h (equilibration) and zero-time (extrapolation) deuterium enrichments in saliva, urine, human milk and breath water vapour samples.

2. The deuterium spaces obtained by equilibration were statistically larger than those obtained by extrapolation. Isotope dilution spaces derived from deuterium enrichments in saliva, breath water vapour and human milk did not differ with the exception of the 6 h equilibration value of milk, which was greater than that estimated from saliva. Deuterium-dilution spaces estimated from urine were consistently smaller than those derived from the other biological fluids.

3. No significant differences in body fat, fat-free mass and total body water were observed between anthropometric measurements and deuterium-dilution methods, except for extrapolated values derived from deuterium enrichments in urine.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Body composition of lactating women determined by anthropometry and deuterium dilution
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Body composition of lactating women determined by anthropometry and deuterium dilution
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Body composition of lactating women determined by anthropometry and deuterium dilution
      Available formats
      ×

Copyright

References

Hide All
Bland, J. M. & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurements. Lancet i, 307310.
Butte, N. F., Garza, C., Stuff, J. E., Smith, E. O. & Nichols, B. L. (1984). Effect of maternal diet and body composition on lactational performance. American Journal of Clinical Nutrition 39, 296306.
Butte, N. F., Wills, C., Smith, E. O. & Garza, C. (1985). Prediction of body density from skinfold measurements in lactating women. British Journal of Nutrition 53, 485489.
De Wit, J. C., Van Der Straaten, C. M. & Mook, W. G. (1980). Determination of the absolute hydrogen isotopic ratio of V-SMOW and SLAP. Geostandards Newsletter 4, 3336.
Durnin, J. V. G. A. & Rahaman, M. M. (1967). The assessment of the amount of fat in the human body from measurement of skinfold thickness. British Journal of Nutrition 21, 681689.
Durnin, J. V. G. A. & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition 32, 7797.
Forbes, G. B. (1987). Human Body Composition, p. 31. New York: Springer-Verlag.
Gonfiantini, R. (1984). Report on Advisory Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigations. Vienna, Austria: International Atomic Energy Agency.
Manning-Dalton, C. & Allen, L. H. (1983). The effects of lactation on energy and protein consumption, postpartum weight change and body composition of well-nourished North American women. Nutrition Research 3, 293308.
Quandt, S. A. (1983). Changes in maternal postpartum adiposity and infant feeding patterns. American Journal of Physical Anthropology 60, 455461.
Schoeller, D. A., Dietz, W. D., Van Santen, E. & Klein, P. D. (1982). Validation of saliva sampling for total body water determination by 2H218O dilution. American Journal of Clinical Nutrition 35, 591594.
Sheng, H.-P. & Huggins, R. A. (1979). A review of body composition studies with emphasis on total body water and fat. American Journal of Clinical Nutrition 32, 630647.
Siri, W. E. (1956). Body Composition from Fluid Spaces and Density. University of Colorado Donner Laboratory Physics Report. no. 3349. Boulder, Colorado: University of Colorado.
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, pp. 299338. Iowa: Iowa State University Press.
Taggart, N. R., Holliday, R. M., Billewicz, W. Z., Hytten, F. E. & Thomson, A. M. (1967). Changes in skinfolds during pregnancy. British Journal of Nutrition 21, 439451.
Wong, W. W., Cochran, W. J., Klish, W. J., Smith, E. O., Lee, L. S. & Klein, P. D. (1988). In vivo isotope fractionation factors and the measurement of deuterium- and oxygen-18-dilution spaces from plasma, urine, saliva, respiratory water vapor, and carbon dioxide. American Journal of Clinical Nutrition 47, 16.
Wong, W. W., Lee, L. S. & Klein, P. D. (1987). Deuterium and oxygen-18 measurements on microliter samples of urine, plasma, saliva, and human milk. American Journal of Clinical Nutrition 45, 905913.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed