Skip to main content Accessibility help

A case–control study on seaweed consumption and the risk of breast cancer

  • Yoon Jung Yang (a1), Seok-Jin Nam (a2), Gu Kong (a3) and Mi Kyung Kim (a1)


Gim (Porphyra sp.) and miyeok (Undaria pinnatifida) are the seaweeds most consumed by Koreans. We investigated the association between the intake of gim and miyeok and the risk of breast cancer in a case–control study. Cases were 362 women aged 30–65 years old, who were histologically confirmed to have breast cancer. Controls visiting the same hospital were matched to cases according to their age (sd 2 years) and menopausal status. Food intake was estimated by the quantitative FFQ with 121 items, including gim and miyeok. Conditional logistic regression analysis was used to obtain the OR and corresponding 95 % CI. The average intake and consumption frequency of gim in cases were lower than in controls. The daily intake of gim was inversely associated with the risk of breast cancer (5th v. 1st quintile, OR, 0·48; 95 % CI, 0·27, 0·86; P for trend, 0·026) after adjustment for potential confounders. After stratification analysis was performed according to menopausal status, premenopausal women (5th v. 1st quintile, OR, 0·44; 95 % CI, 0·24, 0·80; P for trend, 0·007) and postmenopausal women (5th v. 1st quintile, OR, 0·32; 95 % CI, 0·13, 0·80; P for trend, 0·06) showed similar inverse associations between gim intake and the risk of breast cancer after an adjustment for potential confounders except dietary factors. Miyeok consumption did not have any significant associations with breast cancer. These results suggest that high intake of gim may decrease the risk of breast cancer.


Corresponding author

*Corresponding author: Mi Kyung Kim, fax +82 2 2293 0660, email


Hide All
1 Chapman, VJ & Chapman, DJ (1980) Sea vegetables (algae as food for man). Seaweeds and their Uses, pp. 6297. London: Chapman & Hall.
2 Ruperez, P (2002) Mineral content of edible marine seaweeds. Food Chem 79, 2326.
3 Mabeau, S & Fleurence, J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Tech 4, 103107.
4 Yamada, K, Yamada, Y, Fukuda, M, et al. (1999) Bioavailability of dried asakusanori (Porphyra tenera) as a source of cobalamin (vitamin B12). Int J Vitam Nutr Res 69, 412418.
5 Lahaye, M (1991) Marine algae as sources of fibres: determination of soluble and insoluble DF contents in some sea vegetables. J Sci Food Agric 54, 587594.
6 Kwon, MJ & Nam, TJ (2006) Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79, 19561962.
7 Yuan, YV & Walsh, NA (2006) Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44, 11441150.
8 Okai, Y, Higashi-Okai, K, Nakamura, S, et al. (1994) Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promotor-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Cancer Lett 87, 2532.
9 Guo, TT, Xu, HL, Zhang, LX, et al. (2007) In vivo protective effect of Porphyra yezoensis polysaccharide against carbon tetrachloride induced hepatotoxicity in mice. Regul Toxicol Pharmacol 49, 101106.
10 Yamamoto, I, Maruyama, H & Moriguchi, M (1987) The effect of dietary seaweeds on 7,12-dimethyl-benz[a]anthracene-induced mammary tumorigenesis in rats. Cancer Lett 35, 109118.
11 Yamamoto, I & Maruyama, H (1985) Effect of dietary seaweed preparations on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in rats. Cancer Lett 26, 241251.
12 Zhang, Q, Li, N, Zhou, G, et al. (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res 48, 151155.
13 Zhao, T, Zhang, Q, Qi, H, et al. (2006) Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int J Biol Macromol 38, 4550.
14 Hwang, HJ, Kwon, MJ, Kim, IH, et al. (2008) Chemoprotective effects of a protein from the red algae Porphyra yezoensis on acetaminophen-induced liver injury in rats. Phytother Res 22, 11491153.
15 Burritt, DJ, Larkindale, J & Hurd, CL (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215, 829838.
16 Okai, Y, Higashi-Okai, K, Yano, Y, et al. (1996) Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett 100, 235240.
17 Yuan, YV, Carrington, MF & Walsh, NA (2005) Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 43, 10731081.
18 Teas, J (1981) The consumption of seaweed as a protective factor in the etiology of breast cancer. Med Hypotheses 7, 601613.
19 Kamangar, F, Dores, GM & Anderson, WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24, 21372150.
20 LeMarchand, L, Kolonel, LN & Nomura, AM (1985) Breast cancer survival among Hawaii Japanese and Caucasian women. Ten-year rates and survival by place of birth. Am J Epidemiol 122, 571578.
21 Minami, Y, Takano, A, Okuno, Y, et al. (1996) Trends in the incidence of female breast and cervical cancers in Miyagi Prefecture, Japan, 1959–1987. Jpn J Cancer Res 87, 1017.
22 Maruyama, H, Watanabe, K & Yamamoto, I (1991) Effect of dietary kelp on lipid peroxidation and glutathione peroxidase activity in livers of rats given breast carcinogen DMBA. Nutr Cancer 15, 221228.
23 Funahashi, H, Imai, T, Mase, T, et al. (2001) Seaweed prevents breast cancer? Jpn J Cancer Res 92, 483487.
24 Sekiya, M, Funahashi, H, Tsukamura, K, et al. (2005) Intracellular signaling in the induction of apoptosis in a human breast cancer cell line by water extract of Mekabu. Int J Clin Oncol 10, 122126.
25 Funahashi, H, Imai, T, Tanaka, Y, et al. (1999) Wakame seaweed suppresses the proliferation of 7,12-dimethylbenz(a)-anthracene-induced mammary tumors in rats. Jpn J Cancer Res 90, 922927.
26 Winkler, R, Griebenow, S & Wonisch, W (2000) Effect of iodide on total antioxidant status of human serum. Cell Biochem Funct 18, 143146.
27 Serra Majem, LL, Tresserras, R, Canela, J, et al. (1988) Dietary iodine deficiency and breast cancer mortality: an ecological study. Int J Epidemiol 17, 686687.
28 Shin, H-R, Jung, K-W, Won, Y-J, et al. (2007) National cancer incidence for the year 2002 in Korea. Cancer Res Treat 39, 139149.
29 Ministry for Health, Welfare and Family Affairs (2008) Cancer Facts & Figures 2008. Kwacheon: Ministry for Health, Welfare and Family Affairs.
30 The Korean Ministry of Health and Welfare (2007) The Third (2005) Korea Health and Nutrition Examination Survey. Kwacheon: The Korean Ministry of Health and Welfare.
31 Key, TJ, Sharp, GB, Appleby, PN, et al. (1999) Soya foods and breast cancer risk: a prospective study in Hiroshima and Nagasaki, Japan. Br J Cancer 81, 12481256.
32 Kim, MK, Lee, SS & Ahn, YO (1996) Reproducibility and validity of a self-administered semiquantitative food frequency questionnaire among middle-aged men in Seoul. Korean J Community Nutr 1, 376394.
33 Willett, WC (1998) Nutritional Epidemiology, 2nd ed. New York: Oxford University Press.
34 Hong, SA, Kim, K, Nam, SJ, et al. (2008) A case–control study on the dietary intake of mushrooms and breast cancer risk among Korean women. Int J Cancer 122, 919923.
35 Kim, MK, Kim, JH, Nam, SJ, et al. (2008) Dietary intake of soy protein and tofu in association with breast cancer risk based on a case–control study. Nutr Cancer 60, 568576.
36 The Korean Nutrition Society (2005) Dietary Reference Intakes for Koreans. Seoul: The Korean Nutrition Society.
37 Kanazawa, I (1963) Vitamins in algae. Bull Jpn Soc Sci Fish 29, 713731.
38 Ishii, T, Susuki, H & Koyanagi, T (1978) Determination of trace elements in marine organisms. 1. Factors for variation of concentration of trace element. Bull Jpn Soc Sci Fish 44, 155162.
39 Maruyama, H, Tamauchi, H, Iizuka, M, et al. (2006) The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu). Planta Med 72, 14151417.
40 Hosokawa, M, Kudo, M, Maeda, H, et al. (2004) Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARgamma ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta 1675, 113119.
41 Kang, KS, Kim, ID, Kwon, RH, et al. (2008) The effects of fucoidan extracts on CCl(4)-induced liver injury. Arch Pharm Res 31, 622627.
42 Nagataki, S (2008) The average of dietary iodine intake due to the ingestion of seaweeds is 1·2 mg/day in Japan. Thyroid 18, 667668.
43 Kilbane, MT, Ajjan, RA, Weetman, AP, et al. (2000) Tissue iodine content and serum-mediated 125I uptake-blocking activity in breast cancer. J Clin Endocrinol Metab 85, 12451250.
44 Eskin, BA, Grotkowski, CE, Connolly, CP, et al. (1995) Different tissue responses for iodine and iodide in rat thyroid and mammary glands. Biol Trace Elem Res 49, 919.
45 Teas, J, Harbison, ML & Gelman, RS (1984) Dietary seaweed (Laminaria) and mammary carcinogenesis in rats. Cancer Res 44, 27582761.
46 Garcia-Solis, P, Alfaro, Y, Anguiano, B, et al. (2005) Inhibition of N-methyl-N-nitrosourea-induced mammary carcinogenesis by molecular iodine (I2) but not by iodide (I− ) treatment evidence that I2 prevents cancer promotion. Mol Cell Endocrinol 236, 4957.
47 Dawczynski, C, Schafer, U, Leiterer, M, et al. (2007) Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J Agric Food Chem 55, 1047010475.
48 Caliceti, M, Argese, E, Sfriso, A, et al. (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47, 443454.
49 Wei, C, Li, W, Zhang, C, et al. (2003) Safety evaluation of organoarsenical species in edible Porphyra from the China Sea. J Agric Food Chem 51, 51765182.
50 Almela, C, Algora, S, Benito, V, et al. (2002) Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J Agric Food Chem 50, 918923.
51 Breslow, NE & Day, NE (1980) The Analysis of Case–control Studies. Statistical Methods in Cancer Research, vol. I. Lyon: IARC.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed