Skip to main content Accessibility help
×
Home

Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial

  • Laura Blancquaert (a1), Audrey Baguet (a1), Tine Bex (a1), Anneke Volkaert (a1), Inge Everaert (a1), Joris Delanghe (a2), Mirko Petrovic (a3), Chris Vervaet (a4), Stefaan De Henauw (a5), Dumitru Constantin-Teodosiu (a6), Paul Greenhaff (a6) and Wim Derave (a1)...

Abstract

Balanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control, n 10), vegetarian diet without supplementation (Veg+Pla, n 15) and vegetarian diet combined with daily β-alanine (0·8–0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl, n 15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 and P=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect. 1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (P<0·001) and gastrocnemius (P=0·001) muscle. To conclude, the body creatine pool declined over a 3-month vegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: W. Derave, email Wim.derave@ugent.be.

References

Hide All
1. Tantamango-Bartley, Y, Jaceldo-Siegl, K, Fan, J, et al. (2013) Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev 22, 286294.
2. McEvoy, CT, Temple, N & Woodside, JV (2012) Vegetarian diets, low-meat diets and health: a review. Public Health Nutr 15, 22872294.
3. Orlich, MJ, Singh, PN, Sabaté, J, et al. (2013) Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med 173, 12301238.
4. Leitzmann, C (2005) Vegetarian diets: what are the advantages? Forum Nutr 57, 147156.
5. Gualano, B, Rawson, ES, Candow, DG, et al. (2016) Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids 48, 17931805.
6. Steiber, A, Kerner, J & Hoppel, CL (2004) Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 25, 455473.
7. Fritz, IB & Marquis, NR (1965) The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A 54, 12261233.
8. Seiler, S, Koves, T, Gooding, J, et al. (2015) Carnitine acetyltransferase mitigates metabolic inertia and muscle fatigue during exercise. Cell Metab 22, 6576.
9. Blancquaert, L, Everaert, I & Derave, W (2015) Beta-alanine supplementation, muscle carnosine and exercise performance. Curr Opin Clin Nutr Metab Care 18, 6370.
10. Hobson, RM, Saunders, B, Ball, G, et al. (2012) Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids 43, 2537.
11. Wall, BT, Stephens, FB, Constantin-Teodosiu, D, et al. (2011) Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol J Physiol J Physiol 5894, 963973.
12. Twycross-Lewis, R, Kilduff, LP, Wang, G, et al. (2016) The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects. Amino Acids 48, 18431855.
13. Boldyrev, AA, Aldini, G & Derave, W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93, 18031845.
14. Pinto, CL, Botelho, PB, Pimentel, GD, et al. (2016) Creatine supplementation and glycemic control: a systematic review. Amino Acids 48, 21032129.
15. Novakova, K, Kummer, O, Bouitbir, J, et al. (2016) Effect of l-carnitine supplementation on the body carnitine pool, skeletal muscle energy metabolism and physical performance in male vegetarians. Eur J Nutr 55, 207217.
16. Delanghe, J, De Slypere, J-P, De Buyzere, M, et al. (1989) Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin Chem 35, 19881989.
17. Lombard, KA, Olson, L, Nelson, SE, et al. (1989) Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 50, 301306.
18. Stephens, FB, Marimuthu, K, Cheng, Y, et al. (2011) Vegetarians have a reduced skeletal muscle carnitine transport capacity. Am J Clin Nutr 94, 938944.
19. Burke, DG, Chilibeck, PD, Parise, G, et al. (2003) Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc 35, 19461955.
20. Everaert, I, Mooyaart, A, Baguet, A, et al. (2011) Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids 40, 12211229.
21. Harris, RC, Jones, G, Hill, C, et al. (2007) The carnosine content of vastus lateralis in vegetarians and omnivores. FASEB J 21, A944.
22. Wyss, M & Kaddurah-Daouk, R (2000) Creatine and creatinine metabolism. Physiol Rev 80, 11071213.
23. Baguet, A, Reyngoudt, H, Pottier, A, et al. (2009) Carnosine loading and washout in human skeletal muscles. J Appl Physiol 106, 837842.
24. Lukaszuk, JM, Robertson, RJ, Arch, JE, et al. (2002) Effect of creatine supplementation and a lacto-ovo-vegetarian diet on muscle creatine concentration. Int J Sport Nutr Exerc Metab 12, 336348.
25. Baguet, A, Everaert, I, De Naeyer, H, et al. (2011) Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity. Eur J Appl Physiol 111, 25712580.
26. Nelson, AG, Day, R, Glickman-Weiss, EL, et al. (2000) Creatine supplementation alters the response to a graded cycle ergometer test. Eur J Appl Physiol 83, 8994.
27. Stout, JR, Cramer, JT, Zoeller, RF, et al. (2007) Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32, 381386.
28. Baguet, A, Everaert, I, Achten, E, et al. (2012) The influence of sex, age and heritability on human skeletal muscle carnosine content. Amino Acids 43, 1320.
29. Kreider, RB, Kalman, DS, Antonio, J, et al. (2017) International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 14, 18.
30. Décombaz, J, Beaumont, M, Vuichoud, J, et al. (2012) Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia. Amino Acids 43, 6776.
31. Green, AL, Hultman, E, Macdonald, IA, et al. (1996) Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol 271, E821E826.
32. Stegen, S, Blancquaert, L, Everaert, I, et al. (2013) Meal and beta-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc 45, 14781485.
33. Cognat, S, Cheillan, D, Piraud, M, et al. (2004) Determination of guanidinoacetate and creatine in urine and plasma by liquid chromatography-tandem mass spectrometry. Clin Chem 50, 14591461.
34. Harris, R, Hultman, E & Nordesjö, L (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33, 109120.
35. Cederblad, G, Carlin, JI, Constantin-Teodosiu, D, et al. (1990) Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle. Anal Biochem 185, 274278.
36. Baguet, A, Bourgois, J, Vanhee, L, et al. (2010) Important role of muscle carnosine in rowing performance. J Appl Physiol 109, 10961101.
37. Balsom, PD, Söderlund, K & Ekblom, B (1994) Creatine in humans with special reference to creatine supplementation. Sport Med 18, 268280.
38. Shomrat, A, Weinstein, Y & Katz, A (2000) Effect of creatine feeding on maximal exercise performance in vegetarians. Eur J Appl Physiol 82, 321325.
39. Hultman, E, Söderlund, K, Timmons, JA, et al. (1996) Muscle creatine loading in men. J Appl Physiol 81, 232237.
40. Krajčovičová-Kudláčková, M, Šimončič, R, Béderová, A, et al. (2000) Correlation of carnitine levels to methionine and lysine intake. Physiol Res 49, 399402.
41. Dursun, A (2000) Carnitinuria in rickets due to vitamin D deficiency. Turk J Pediatr 42, 278280.
42. Park, S, Kim, DS & Kang, S (2016) Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-ɣ expression in nonobese type 2 diabetic rats. J Nutr Biochem 27, 257265.
43. Rebouche, J, Lombard, A & Chenard, A (1993) Renal adaptation to dietary carnitine in humans. Am J Clin Nutr 58, 660665.
44. Cross, AJ, Major, JM & Sinha, R (2011) Urinary biomarkers of meat consumption. Cancer Epidemiol Biomarkers Prev 20, 11071111.
45. Dragsted, LO (2010) Biomarkers of meat intake and the application of nutrigenomics. Meat Sci 84, 301307.
46. Altorf-van der Kuil, W, Brink, EJ, Boetje, M, et al. (2013) Identification of biomarkers for intake of protein from meat, dairy products and grains: a controlled dietary intervention study. Br J Nutr 110, 810822.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed