Skip to main content
×
×
Home

Cholesterol-lowering effect of soyabean lecithin in normolipidaemic rats by stimulation of biliary lipid secretion

  • Elisabeth Polichetti (a1), Nicolas Diaconescu (a1), Paulette Lechene De La Porte (a1), Lina Malli (a2), Henri Portugal (a3), Anne-Marie Pauli (a3), Huguette Lafond (a1), Beatriz Tuchweber (a4), Ibrahim Yousef (a2) and Francoise Chanussot (a1)...
Abstract

The purpose of the present study was to assess the role of the liver in the plasma-cholesterol-lowering effect of soyabean lecithin. Normolipidaemic rats were fed on lecithin-enriched or control diets with the same amount of protein. The lecithin diets contained 200 g/kg high-fat commercial semi-purified soyabean lecithin (230 g/kg total lipids as soyabean phosphatidylcholine) or 200 g/kg high-fat purified soyabean lecithin (930 g/kg total lipids as soyabean phosphatidylcholine). The control diets were a low-fat diet (40 g fat/kg) and a high-fat triacylglycerol-rich diet (200 g fat/kg). The high-fat diets were isoenergetic. The cholesterol-lowering effect of the lecithin-enriched diets was associated with significantly lower levels of plasma total- and HDL-cholesterol and significantly higher levels of bile phosphatidylcholine (PC), bile salts and cholesterol. These findings suggest that the liver plays a major role in the reduction of plasma cholesterol, the increased biliary lipid being provided by both HDL and the hepatic microsomal pools of PC and cholesterol.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cholesterol-lowering effect of soyabean lecithin in normolipidaemic rats by stimulation of biliary lipid secretion
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cholesterol-lowering effect of soyabean lecithin in normolipidaemic rats by stimulation of biliary lipid secretion
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cholesterol-lowering effect of soyabean lecithin in normolipidaemic rats by stimulation of biliary lipid secretion
      Available formats
      ×
Copyright
References
Hide All
Amic, J., Lairon, D. & Hauton, J. C. (1972). Technique de dosage automatique de l'orthophosphate de grande fiabilité (Automatic and accurate assay technique for orthophosphate). Clinica Chimica Acta 40, 107114.
Aufenanger, J., Haux, P., Weber, U. & Kattermann, R. (1988). A specific method for the direct determination of lipoprotein cholesterol in electrophoretic patterns. Clinica Chimica Acta 177, 197208.
Bravo, E. & Cantafora, A. (1990). Hepatic uptake and processing of free cholesterol from different lipoproteins with and without sodium taurocholate administration. An in vivo study in the rat. Biochimica et Biophysica Acta 1045, 7480.
Chanussot, F., Lafont, H., Hauton, J., Tuchweber, B. & Yousef, I. (1990). Studies on the origin of biliary phospholipid. Effect of dehydrocholic acid and cholic acid infusions on hepatic and biliary phospholipids. Biochemical Journal 270, 691695.
Domingo, N., Amic, J. & Hanton, J. (1972). Dosage automatique des sels biliaires conjugués de la bile par la 3α-hydroxystéroïde déshydroénase (Automatic assay for conjugated bile salts in bile by an enzymic technique using 3α-hydroxysteroid dehydrogenase). Clinica Chimica Acta 31, 399404.
Esnault-Dupuy, C., Chanussot, F., Lafont, H., Chabert, C. & Hauton, J. (1987). The relationship between HDL-, LDL-, liposomes-free cholesterol, biliary cholesterol and bile salts in the rat. Biochimie 69, 4552.
Halloran, L. G., Schwartz, C. C., Vlahcevic, Z. R., Nisman, R. M. & Swell, L. (1978). Evidence for high-density lipoprotein free cholesterol as the primary precursor for bile-acid synthesis in man. Surgery 84, 17.
Huang, C., Chen, C. P., Wefler, V. & Raftery, A. (1961). A stable reagent for the Lieberman-Burchard reaction, application to rapid serum cholesterol determination. Analytical Chemistry 33, 14051407.
Ide, T., Murata, M. & Sundda, Y. (1994). Triacylglycerol and fatty acid synthesis in hepatocytes in suspension isolated from rats fed soybean phospholipid. Bioscience, Biotechnology, and Biochemistry 58, 699702.
Imaizumi, K., Sekihara, K. & Sugano, M. (1991). Hypocholesterolemic action of dietary phosphatidylethanolamine in rats sensitive to exogenous cholesterol. Journal of Nutritional Biochemistry 2, 251254.
Iwata, T., Hoshi, S., Takehisa, F., Tsutsumi, K., Furukawa, Y. & Kimura, S. (1992). The effect of dietary safflower phospholipid and soybean phospholipid on plasma and liver lipids in rats fed a hypercholesterolemic diet. Journal of Nutritional Science and Vitaminology 38, 471479.
Iwata, T., Kimura, Y., Tsutsumi, K., Furukawa, Y. & Kimura, S. (1993). The effect of various phospholipids on plasma lipoproteins and liver lipids in hypercholesterolemic rats. Journalof Nutritional Science and Vitaminology 39, 6371.
Jimenez, M. A., Scarino, M. L., Vignolini, F. & Mengheri, E. (1990). Evidence that polyunsaturated lecithin induces a reduction in plasma cholesterol level and favorable changes in lipoprotein composition in hypercholesterolemic rats. Journal of Nutrition 120, 659667.
Knuiman, J. T., Beynen, A. C. & Katan, M. B. (1989). Lecithin intake and serum cholesterol. American Journal of Clinical Nutrition 49, 266268.
Lie, R. F., Schmitz, J. M., Pierre, K. J. & Gochman, N. (1976). Cholesterol oxidase-based determination by continuous flow analysis of total and free cholesterol in serum. Clinical Chemistry 22, 1627.
Lowry, O. H., Rosebrough, N. F., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.
Luft, J. H. (1961). Improvements in epoxy resin embedding methods. Journal of Biophysical and Biochemical Cytology 9, 409.
Martins, I. J., Lenzo, N. P. & Redgrave, T. G. (1989). Phosphatidylcholine metabolism after transfer from lipid emulsions injected intravenously in rats. Implications for high-density lipoprotein metabolism. Biochimica et Biophysica Acta 1005, 217224.
Podrez, E. A., Kosykh, V. A., Lakeev, Y. V., Kosenkov, E. I., Mambetisaeva, E. T., Repin, V. S., Smirnov, V. N. & Miettinen, T. A. (1993). Bile acid and very low density lipoprotein production by cultured hepatocytes from hypo- or hyperresponsive rabbits fed cholesterol. Lipids 28, 709713.
Portal, I., Clerc, T., Sbarra, V., Portugal, H., Pauli, A. M., Lafont, H., Tuchweber, B., Yousef, I. & Chanussot, F. (1993). Importance of high-density lipoprotein-phosphatidylcholine in secretion of phospholipid and cholesterol in bile. American Journal of Physiology 264, G1052Gl056.
Pownall, H. J., Hickson-Bick, D. & Massey, J. B. (1991). Effects of hydrophobicity on turnover of plasma high density lipoproteins labeled with phosphatidylcholine ethers in the rat. Journal of Lipid Research 32, 793800.
Rioux, F., Perea, A., Yousef, I. M., Levy, E., Malli, L., Carrillo, M. C. & Tuchweber, B. (1994). Short-term feeding of a diet enriched in phospholipids increases bile formation and the bile acid transport maximum in rats. Biochimica et Biophysicci Acta 1214, 193202.
Rivabene, R., Cantafora, A., Yan, C. C., Castellano, F., Bruscalupi, G. & Bravo, E. (1992). Effect of HDL1 infusion on biliary secretion in perfused rat liver. Bioscience Reports 12, 425432.
Robins, S. J., Fasulo, J. M. & Patton, G. M. (1990). Effect of bile salt on phosphatidylcholine composition and secretion of hepatic high-density lipoproteins. American Journal of Physiology 259, G205G211.
Schwartz, C. C., Zech, L. A., Van den Broek, J. & Cooper, P. S. (1993). Cholesterol kinetics in subjects with bile fistula. Positive relationship between size of the bile acid precursor pool and bile acid synthetic rate. Journal of Clinical Investigation 91, 923938.
Sottocasa, G. L., Kuylenstierna, B., Ernster, L. & Bergstrand, A. (1967). An electron transport system associated with the outer membrane of liver mitochondria. Journal of Cell Biology 32, 415438.
Takdyama, M., Itoh, S., Nagasaki, T. & Tanimizu, I. (1977). A new enzymatic method for choline containing phospholipids. Clinica Chimica Acta 79, 9398.
Tijburg, L. B. M., Samborski, R. W. & Vance, D. E. (1991). Evidence that remodeling of the fatty acids of phosphatidylcholine is regulated in isolated rat hepatocytes and involves both the sn-1 and sn-2 positions. Biochimica et Biophysica Acta 1085, 184190.
Tompkins, R. K. & Parkin, L. G. (1980). Effects of long-term ingestion of soya phospholipids on serum lipids in humans. American Journal of Surgery 140, 360364.
Williams, K. J., Werth, V. P. & Wolf, J. A. (1984). Intravenously administered lecithin Iiposomes: a synthetic antiatherogenic lipid particle. Perspectives in Biology and Medicine 27, 417431.
Yousef, I. M., Bloxham, D. L., Philipps, M. J. & Fisher, M. M. (1975). Liver cell plasma membrane lipids and the origin of biliary phospholipid. Canadian Journal of Biochemistry 53, 989997.
Yousef, I. M., Mignault, D., Weber, A. M. & Tuchweber, B. (1990). Influence of dehydrocholic acid on the secretion of biliary phospholipid. Digestion 45, 4051.
Yousef, I. M. & Tuchweber, B. (1984). Effect of lithocholic acid on cholesterol synthesis and transport in the rat liver. Biochimica et Biophysica Acta 796, 336344.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed