Skip to main content Accessibility help

Cocoa: antioxidant and immunomodulator

  • Emma Ramiro-Puig (a1) and Margarida Castell (a1)

Cocoa, a product consumed since 600 BC, is now a subject of increasing interest because of its antioxidant properties, which are mainly attributed to the content of flavonoids such as ( − )-epicatechin, catechin and procyanidins. Moreover, recent findings suggest a regulatory effect of cocoa on the immune cells implicated in innate and acquired immunity. Cocoa exerts regulatory activity on the secretion of inflammatory mediators from macrophages and other leucocytes in vitro. In addition, emerging data from in vivo studies support an immunomodulating effect. Long-term cocoa intake in rats affects both intestinal and systemic immune function. Studies in this line suggest that high-dose cocoa intake in young rats favours the T helper 1 (Th1) response and increases intestinal γδ T lymphocyte count, whereas the antibody-secreting response decreases. The mechanisms involved in this activity are uncertain; nonetheless, because redox-sensitive pathways control immune cell function, the action of cocoa flavonoids on modulating cell signalling and gene expression deserves investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cocoa: antioxidant and immunomodulator
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cocoa: antioxidant and immunomodulator
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cocoa: antioxidant and immunomodulator
      Available formats
Corresponding author
*Corresponding author: Dr Margarida Castell, fax +34 93 403 59 01, email
Hide All
1Hurst, WJ, Tarka, SM Jr, Powis, TG, et al. (2002) Cacao usage by the earliest Maya civilization. Nature 418, 289290.
2Dillinger, TL, Barriga, P, Escarcega, S, et al. (2000) Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr 130, 2057S2072S.
3Vinson, JA, Proch, J & Zubik, L (1999) Phenol antioxidant quantity and quality in foods: cocoa, dark chocolate, and milk chocolate. J Agric Food Chem 47, 48214824.
4Lee, KW, Kim, YJ, Lee, HJ, et al. (2003) Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 51, 72927295.
5Vinson, JA, Proch, J, Bose, P, et al. (2006) Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American diets. J Agric Food Chem 54, 80718076.
6Gu, L, House, SE, Wu, X, et al. (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 54, 40574061.
7Pura Naik, J (2001) Improved high-performance liquid chromatography method to determine theobromine and caffeine in cocoa and cocoa products. J Agric Food Chem 49, 35793583.
8Hackman, RM, Polagruto, JA, Zhu, QY, et al. (2008) Flavanols: digestion, absorption and bioactivity. Phytochem Rev 7, 195208.
9Rios, LY, Bennett, RN, Lazarus, SA, et al. (2002) Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr 76, 11061110.
10Baba, S, Osakabe, N, Yasuda, A, et al. (2000) Bioavailability of ( − )-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic Res 33, 635641.
11Deprez, S, Mila, I, Huneau, JF, et al. (2001) Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid Redox Signal 3, 957967.
12Holt, RR, Lazarus, SA, Sullards, MC, et al. (2002) Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76, 798804.
13Tsang, C, Auger, C, Mullen, W, et al. (2005) The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr 94, 170181.
14Baba, S, Osakabe, N, Natsume, M, et al. (2001) Absorption and urinary excretion of ( − )-epicatechin after administration of different levels of cocoa powder or ( − )-epicatechin in rats. J Agric Food Chem 49, 60506056.
15Roura, E, Andres-Lacueva, C, Jauregui, O, et al. (2005) Rapid liquid chromatography tandem mass spectrometry assay to quantify plasma ( − )-epicatechin metabolites after ingestion of a standard portion of cocoa beverage in humans. J Agric Food Chem 53, 61906194.
16Chang, Q, Zuo, Z, Ho, WKK, et al. (2005) Comparison of the pharmacokinetics of hawthorn phenolics in extract versus individual pure compound. J Clin Pharmacol 45, 106112.
17Zuo, Z, Zhang, L, Zhou, L, et al. (2006) Intestinal absorption of hawthorn flavonoids – in vitro, in situ and in vivo correlations. Life Sci 79, 24552462.
18Baba, S, Osakabe, N, Natsume, M, et al. (2000) Cocoa powder enhances the level of antioxidative activity in rat plasma. Br J Nutr 84, 673680.
19Manach, C, Scalbert, A, Morand, C, et al. (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.
20Gu, L, House, SE, Rooney, L, et al. (2007) Sorghum bran in the diet dose dependently increased the excretion of catechins and microbial-derived phenolic acids in female rats. J Agric Food Chem 55, 53265334.
21Serafini, M, Bugianesi, R, Maiani, G, et al. (2003) Plasma antioxidants from chocolate. Nature 424, 1013.
22Keogh, JB, McInerney, J & Clifton, PM (2007) The effect of milk protein on the bioavailability of cocoa polyphenols. J Food Sci 72, S230S233.
23Roura, E, Andrés-Lacueva, C, Estruch, R, et al. (2007) Milk does not affect the bioavailability of cocoa powder flavonoid in healthy human. Ann Nutr Metab 51, 493498.
24Roura, E, Andrés-Lacueva, C, Estruch, R, et al. (2008) The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa ( − )-epicatechin metabolites in healthy human subjects. Br J Nutr 100, 846851.
25Schramm, DD, Karim, M, Schrader, HR, et al. (2003) Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci 73, 857869.
26de Boer, VC, Dihal, AA, van der Woude, H, et al. (2005) Tissue distribution of quercetin in rats and pigs. J Nutr 135, 17181725.
27Cotelle, N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1, 569590.
28Morel, I, Lescoat, G, Cogrel, P, et al. (1993) Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 45, 1319.
29Hatano, T, Miyatake, H, Natsume, M, et al. (2002) Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry 59, 749758.
30Yilmaz, Y & Toledo, RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52, 255260.
31Pollard, SE, Kuhnle, GG, Vauzour, D, et al. (2006) The reaction of flavonoid metabolites with peroxynitrite. Biochem Biophys Res Commun 350, 960968.
32Nakao, M, Takio, S & Ono, K (1998) Alkyl peroxyl radical-scavenging activity of catechins. Phytochemistry 49, 23792382.
33Pazos, M, Andersen, ML, Medina, I, et al. (2007) Efficiency of natural phenolic compounds regenerating α-tocopherol from α-tocopheroxyl radical. J Agric Food Chem 55, 36613666.
34Arteel, GE & Sies, H (1999) Protection against peroxynitrite by cocoa polyphenol oligomers. FEBS Lett 462, 167170.
35Counet, C & Collin, S (2003) Effect of the number of flavanol units on the antioxidant activity of procyanidin fractions isolated from chocolate. J Agric Food Chem 51, 68166822.
36Formica, JV & Regelson, W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33, 10611080.
37Lamuela-Raventos, RM, Andres-Lacueva, C, Permanyer, J, et al. (2001) More antioxidants in cocoa. J Nutr 131, 834835.
38Nijveldt, RJ, van Nood, E, van Hoorn, DE, et al. (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74, 418425.
39Azam, S, Hadi, N, Khan, UN, et al. (2003) Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med Sci Monit 9, 325330.
40Spencer, JP, Schroeter, H, Rechner, AR, et al. (2001) Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxid Redox Signal 3, 10231039.
41Natsume, M, Osakabe, N, Yasuda, A, et al. (2004) In vitro antioxidative activity of ( − )-epicatechin glucuronide metabolites present in human and rat plasma. Free Radic Res 38, 13411348.
42Zhu, QY, Holt, RR, Lazarus, SA, et al. (2002) Inhibitory effects of cocoa flavanols and procyanidin oligomers on free radical-induced erythrocyte hemolysis. Exp Biol Med 227, 321329.
43Zhu, QY, Schramm, DD, Gross, HB, et al. (2005) Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin Dev Immunol 12, 2734.
44Erlejman, AG, Fraga, CG & Oteiza, PI (2006) Procyanidins protect Caco-2 cells from bile acid- and oxidant-induced damage. Free Radic Biol Med 41, 12471256.
45Lee, KW, Kundu, JK, Kim, SO, et al. (2006) Cocoa polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-κB and MAPKs in mouse skin in vivo. J Nutr 136, 11501155.
46Wang, JF, Schramm, DD, Holt, RR, et al. (2000) A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr 130, 2115S2119S.
47Lecumberri, E, Mateos, R, Ramos, S, et al. (2006) Characterization of cocoa fiber and its effect on the antioxidant capacity of serum in rats. Nutr Hosp 21, 622628.
48Orozco, TJ, Wang, JF & Keen, CL (2003) Chronic consumption of a flavanol- and procyanindin-rich diet is associated with reduced levels of 8-hydroxy-2′-deoxyguanosine in rat testes. J Nutr Biochem 14, 104110.
49Engler, MB, Engler, MM, Chen, CY, et al. (2004) Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 23, 197204.
50Ramiro-Puig, E, Urpi-Sarda, M, Perez-Cano, FJ, et al. (2007) Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats. J Agric Food Chem 55, 64316438.
51Yeh, CT & Yen, GC (2006) Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance-associated protein 3 mRNA expression. J Nutr 136, 1115.
52Mateos, R, Lecumberri, E, Ramos, S, et al. (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B Analyt Technol Biomed Life Sci 827, 7682.
53Fraga, CG, Actis-Goretta, L, Ottaviani, JI, et al. (2005) Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol 12, 1117.
54Cooper, KA, Donovan, JL, Waterhouse, AL, et al. (2008) Cocoa and health: a decade of research. Br J Nutr 99, 111.
55Fisher, ND & Hollenberg, NK (2005) Flavanols for cardiovascular health: the science behind the sweetness. J Hypertens 23, 14531459.
56Osakabe, N (2005) Cacao polyphenols and atherosclerosis. J Clin Biochem Nutr 37, 6772.
57Heptinstall, S, May, J, Fox, S, et al. (2006) Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults. J Cardiovasc Pharmacol 47, Suppl. 2, S197S205.
58Hodgson, JM & Croft, KD (2006) Dietary flavonoids: effects on endothelial function and blood pressure. J Sci Food Agric 86, 24922498.
59Ono, K, Takahashi, T, Kamei, M, et al. (2003) Effects of an aqueous extract of cocoa on nitric oxide production of macrophages activated by lipopolysaccharide and interferon-γ. Nutrition 19, 681685.
60Ramiro, E, Franch, A, Castellote, C, et al. (2005) Flavonoids from Theobroma cacao down-regulate inflammatory mediators. J Agric Food Chem 53, 85068511.
61Mackenzie, GG, Carrasquedo, F, Delfino, JM, et al. (2004) Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-κB activation at multiple steps in Jurkat T cells. FASEB J 18, 167169.
62Kenny, TP, Keen, CL, Schmitz, HH, et al. (2007) Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cells. Exp Biol Med (Maywood) 232, 293300.
63Sanbongi, C, Suzuki, N & Sakane, T (1997) Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol 177, 129136.
64Mao, TK, Powell, JJ, Van de Water, J, et al. (1999) The influence of cocoa procyanidins on the transcription of interleukin 2 in peripheral blood mononuclear cells. Int J Immunother 15, 2329.
65Ramiro, E, Franch, A, Castellote, C, et al. (2005) Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line. Br J Nutr 93, 859866.
66Mao, T, Water, VD, Keen, CL, et al. (2000) Cocoa procyanidins and human cytokine transcription and secretion. J Nutr 130, 2093S2099S.
67Mao, TK, Van de Water, J, Keen, CL, et al. (2002) Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells. J Med Food 5, 1722.
68Mowen, KA & Glimcher, LH (2004) Signaling pathways in Th2 development. Immunol Rev 202, 203222.
69Mao, TK, Water, VD, Keen, CL, et al. (2003) Cocoa flavonols and procyanidins promote transforming growth factor-β1 homeostasis in peripheral blood mononuclear cells. Exp Biol Med 228, 9399.
70Redondo, S, Santos-Gallego, CG & Tejerina, T (2007) TGF-β1: a novel target for cardiovascular pharmacology. Cytokine Growth Factor Rev 18, 279286.
71Wahl, SM (2007) Transforming growth factor-β: innately bipolar. Curr Opin Immunol 19, 5562.
72Valko, M, Leibfritz, D, Moncol, J, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 4484.
73Bhandoola, A & Sambandam, A (2006) From stem cell to T cell: one route or many? Nat Rev Immunol 6, 117126.
74Ramiro-Puig, E, Pérez-Cano, FJ, Ramírez-Santana, C, et al. (2007) Spleen lymphocyte function modulated by a cocoa-enriched diet. Clin Exp Immunol 149, 535542.
75Calder, PC & Kew, S (2002) The immune system: a target for functional foods? Br J Nutr 88, Suppl. 2, S165S177.
76Ramiro-Puig, E, Pérez-Cano, FJ, Ramos-Romero, S, et al. (2008) Intestinal immune system of young rats influenced by cocoa-enriched diet. J Nutr Biochem 19, 555565.
77Akiyama, H, Sato, Y, Watanabe, T, et al. (2005) Dietary unripe apple polyphenol inhibits the development of food allergies in murine models. FEBS Lett 579, 44854491.
78Boismenu, R (2000) Function of intestinal γδ T cells. Immunol Res 21, 123127.
79Hanninen, A & Harrison, LC (2000) γδ T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol Rev 173, 109119.
80Born, WK, Reardon, CL & O'Brien, RL (2006) The function of γδ T cells in innate immunity. Curr Opin Immunol 18, 3138.
81Perez-Cano, FJ, Castellote, C, Marin-Gallen, S, et al. (2005) Neonatal immunoglobulin secretion and lymphocyte phenotype in rat small intestine lamina propria. Pediatr Res 58, 164169.
82Schley, PD & Field, CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87, Suppl. 2, S221S230.
83Yaqoob, P (2003) Lipids and the immune response: from molecular mechanisms to clinical applications. Curr Opin Clin Immunol Metab Care 6, 133150.
84Pérez-Berezo, T, Ramiro-Puig, E, Pérez-Cano, FJ, et al. (2008) Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats. Mol Nutr Food Res (epublication ahead of print version 16 October 2008).
85Colgan, SP, Resnick, MB, Parkos, CA, et al. (1994) IL-4 directly modulates function of a model human intestinal epithelium. J Immunol 153, 21222129.
86Tomas-Barberan, FA, Cienfuegos-Jovellanos, E, Marín, A, et al. (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55, 39263935.
87Pantano, C, Reynaert, NL, van der Vliet, A, et al. (2006) Redox-sensitive kinases of the nuclear factor-κB signaling pathway. Antioxid Redox Signal 8, 17911806.
88Nakamura, H, Nakamura, K & Yodoi, J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15, 351369.
89Park, YC, Rimbach, G, Saliou, C, et al. (2000) Activity of monomeric, dimeric, and trimeric flavonoids on NO production, TNF-α secretion, and NF-κB-dependent gene expression in RAW 264.7 macrophages. FEBS Lett 465, 9397.
90Comalada, M, Camuesco, D, Sierra, S, et al. (2005) In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur J Immunol 35, 584592.
91Kang, NJ, Lee, KW, Lee, DE, et al. (2008) Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J Biol Chem 283, 2066420673.
92Muthian, G & Bright, JJ (2004) Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol 24, 542552.
93Anonymous (1993) The Cocoa Manual: A Guide to De Zaan's Cocoa Products. Zaanstad, the Netherlands: De Zaan Pub.
94Borchers, AT, Keen, CL, Hannum, SM, et al. (2000) Cocoa and chocolate: composition, bioavailability and health implications. J Med Food 3, 77105.
95Sanchez-Rabaneda, F, Jauregui, O, Casals, I, et al. (2003) Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom 38, 3542.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed