Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T12:22:12.273Z Has data issue: false hasContentIssue false

Comparative study of the fermentative characteristics of inulin and different types of fibre in rats inoculated with a human Whole faecal flora

Published online by Cambridge University Press:  09 March 2007

Nathalie Roland
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Système Digestif, 78352, Jouy-en-Josas, Cedex, France
Lionelle Nugon-Baudon
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Système Digestif, 78352, Jouy-en-Josas, Cedex, France
Claude Andrieux
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Système Digestif, 78352, Jouy-en-Josas, Cedex, France
Odette Szylit
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Système Digestif, 78352, Jouy-en-Josas, Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is known that the physico-chemical characteristics of fibre modify their fermentation characteristics in the colon. Previously we showed the varying effects of inulin and different types of fibre on the hepatic and intestinal xenobiotic-metabolizing enzymes (XME) in initially germ-free rats inoculated with a human, methanogenic, whole-faecal flora (Roland et al. 1994). The aim of the present work was to assess whether or not these effects could be related to differences in production of fermentation metabolites (gases excreted in vivo and caecal metabolites) due to the different compositions of fibre. The different types of fibres were analysed with regard to their solubility and their composition of neutral monomers and uronic acids. Inulin was totally soluble, carrot (Daucus carota), cocoa (Theobroma cacao) and wheat bran were partially soluble; pea (Pisum sativum) and oat were nearly totally insoluble. Uronic acids were found mostly in carrot and cocoa fibre. Glucose was present as the main neutral monomer in each fibre type. Xylose was found also in wheat bran, pea and oat fibres, and arabinose was found in wheat bran. Inulin consumption led to high levels of H2 production but no CH4 production, to a 4-fold greater caecal concentration of butyrate than with the other fibres and to a decrease in caecal pH. Conversely, rats fed on carrot or cocoa fibre produced a large amount of CH4 but no H2 and generated a different profile of short-chain fatty acids (SCFA). The lowest amounts of gases and SCFA were found in rats fed on wheat bran, pea and oat fibre. We observed a relationship between the caecal concentration of SCFA and the activity of hepatic glutathione-S-transferase (EC 2·5·1·18) but no direct link was shown between the other XME and the fermentation profile.

Type
Effects of dietary fibre in rats
Copyright
Copyright © The Nutrition Society 1995

References

REFERENCES

Andrieux, C., Lory, S., Dufour-Lescoat, C., de Baynast, R. & Szylit, O. (1991). Physiological effects of inulin in germ-free rats and in heteroxenic rats inoculated with a human fecal flora. Food and Hydrocolloids 5, 4956.CrossRefGoogle Scholar
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70, 567590.Google Scholar
Bingham, S. A. (1993). Plant cell wall material and cancer protection. In Food and Cancer Prevention: Chemical and Biological Aspects, pp. 339347 [Waldron, K. W., Johnson, I. T. and Fenwick, G. R., editors]. Cambridge: The Royal Society of Chemistry.Google Scholar
Bingham, S. A., Williams, D. R. R. & Cummings, J. H. (1985). Dietary fibre consumption in Britain: new estimates and their relation to large bowel cancer mortality. British Journal of Cancer 52, 399402.Google Scholar
Bjorneklett, A. & Jenssen, E. (1982). Relationships between hydrogen (H2) and methane (CH4) production in man. Scandinavian Journal of Gastroenterology 17, 985992.Google Scholar
Blakeney, A. B., Harris, P. J., Henry, R. J. & Stone, B. A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrates Research 113, 291299.CrossRefGoogle Scholar
Burkitt, D. P. (1971). Epidemiology of cancer of the colon and the rectum. Cancer 28, 313.Google Scholar
Cummings, J. H. & Bingham, S. A. (1987). Dietary fibre, fermentation and large bowel cancer. Cancer Surveys 6, 601621.Google ScholarPubMed
Eastwood, M. A., Brydon, W. G. & Anderson, D. M. W. (1986). The effect of the polysaccharide composition and structure of dietary fibers on cecal fermentation and fecal excretion. American Journal of Clinical Nutrition 44, 5155.CrossRefGoogle ScholarPubMed
Englyst, H. N., Bingham, S. A., Runswick, S. A., Collinson, E. & Cummings, J. H. (1989). Dietary fibre (non-starch polysaccharides) in cereal products. Journal of Human Nutrition and Dietetics 2, 253271.CrossRefGoogle Scholar
Harris, P. J. & Ferguson, L. R. (1993). Dietary fibre: its composition and role in protection against colorectal cancer. Mutation Research 290, 97110.Google Scholar
Heitman, D. W., Ord, V. A., Hunter, K. E. & Cameron, I. L. (1989). Effect of dietary cellulose on cell proliferation and progression of 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Cancer Research 49, 55815585.Google ScholarPubMed
Jacobs, L. R. (1986). Relationship between dietary fiber and cancer: metabolic, physiologic, and cellular mechanisms. Proceedings of the Society for Experimental Biology and Medicine 183, 299310.CrossRefGoogle ScholarPubMed
Jacobs, L. R. & Lupton, J. R. (1986). Relationship between colonic luminal pH, cell proliferation, and colon carcinogenesis in 1,2-dimethylhydrazine treated rats fed high fiber diets. Cancer Research 46, 17271734.Google Scholar
Le Coz, Y., Morel, M. T., Bousseboua, H., Dufour, C. & Szylit, O. (1989). Mise au point d'une chambre respiratoire connectée sur isolateur pour la mesure in vivo des gaz de fermentation chez l'animal gnotoxénique (Development of a respiratory chamber and its connexion with an isolator: a method to measure the in vivo production of fermentation gas by gnotobiotic animals). Sciences et Technologie des Animaux de Laboratoire 14, 3539.Google Scholar
Lellouch, J. & Lazar, P. (1974). Méthodes Statistiques en Expérimentation Biologique. Collection Statistique en Biologie et en Medecine. Paris: Médecine-Sciences, Flammarion.Google Scholar
Levrat, M. A., Rémésy, C. & Demigné, C. (1991). High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.Google Scholar
Lindeskog, P., Övervik, E., Hansson, T. & Gustafsson, J. A. (1987). Influence of dietary fibre on hepatic and intestinal metabolism in rat. Scandinavian Journal of Gastroenterology 129, Suppl., 258262.CrossRefGoogle ScholarPubMed
Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. J. G., Cole, C. B. & Fuller, R. (1987). The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. Journal of Applied Bacteriology 63, 3945.Google Scholar
Prosky, L., Asp, N. G., Schweizer, T. F., DeVries, J. W. & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: interlaboratory study. Journal of the Association of Official Analytical Chemists 71, 10171023.Google ScholarPubMed
Ralet, M. C, Delia Valle, G. & Thibault, J. F. (1993). Raw and extruded fibre from pea hull. Part I: Composition and physico-chemical properties. Carbohydrate Polymers 20, 1723.CrossRefGoogle Scholar
Reddy, B., Engle, A., Katsifis, S., Simi, B., Bartram, H. P., Perrino, P. & Mahan, C. (1989). Biochemical epidemiology of colon cancer: effect of types of dietary fiber on fecal mutagens, acid, and neutral sterols in healthy subjects. Cancer Research 49, 46294635.Google ScholarPubMed
Reddy, B. S., Hedges, A. R., Laakso, K. & Wynder, E. L. (1978). Metabolic epidemiology of large bowel cancer. Fecal bulk and constituents of high-risk North American and low-risk Finnish population. Cancer 42, 28322838.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science and Nutrition 33, 103148.CrossRefGoogle ScholarPubMed
Roberts-Andersen, J., Mehta, T. & Wilson, R. B. (1987). Reduction of DMH-induced colon tumors in rats fed psyllium husk or cellulose. Nutrition and Cancer 10, 129136.CrossRefGoogle ScholarPubMed
Roland, N., Nugon-Baudon, L., Flinois, J. P. & Beaune, P. (1994). Hepatic and intestinal cytochrome P-450, glutathione-S-transferase and UDP-glucuronosyl transferase are affected by six types of dietary fiber in rats inoculated with a human whole fecal flora. Journal of Nutrition 1581–1587.CrossRefGoogle ScholarPubMed
Salvador, V., Cherbut, C, Barry, J. L., Bertrand, D., Bonnet, C. & Delort-Laval, J. (1993). Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria. British Journal of Nutrition 70, 189197.CrossRefGoogle ScholarPubMed
Selvendran, R. R. & Robertson, J. A. (1990). The chemistry of dietary fibre. An holistic view of the cell wall matrix. In Dietary Fibre: Chemical and Biological Aspects, pp. 2743 [Southgate, D. A. T., Waldron, K., Johnson, I. T. and Fenwick, G. R., editors]. London: Royal Society of Chemistry.Google Scholar
Smith-Barbaro, P. A., Hanson, D. & Reddy, B. S. (1981). Effect of bran and citrus pulp on hepatic, small intestinal, and colonic mucosal cytochromes P-450 and b5 levels in rats. Journal of Nutrition 111, 789797.Google Scholar
Szylit, O. & Andrieux, C. (1993). Physiological and pathophysiological effects of carbohydrate fermentation. In Intestinal Flora, Immunity, Nutrition and Health. World Review of Nutrition and Dietetics, Vol. 74, pp. 88122 [Simopoulos, A. P., Corring, T. and Rérat, A., editors]. Basel: Karger.Google Scholar
Thibault, J. F. (1979). Automatisation du dosage des substances pectiques par la m´thode au m´tahydroxy-diphényl (Automatization of the assay of pectic substances by the metahydroxy-phenyl method). Lebensmittel-Wissenschaft und Technologie 12, 247251.Google Scholar