Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T04:14:09.663Z Has data issue: false hasContentIssue false

The comparison of total energy and protein intake relative to estimated requirements in chronic spinal cord injury

Published online by Cambridge University Press:  20 September 2023

Gary J. Farkas*
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
Arthur S. Berg
Affiliation:
Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
Alicia Sneij
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
David R. Dolbow
Affiliation:
Department of Physical Therapy, William Carey University, Hattiesburg, MS, USA College of Osteopathic Medicine, William Carey University, Hattiesburg, MS, USA
Ashraf S. Gorgey
Affiliation:
Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
David R. Gater Jr
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
*
*Corresponding author: Gary J. Farkas, Ph.D., email gjf50@med.miami.edu

Abstract

In chronic spinal cord injury (SCI), individuals experience dietary inadequacies complicated by an understudied research area. Our objectives were to assess (1) the agreement between methods of estimating energy requirement (EER) and estimated energy intake (EEI) and (2) whether dietary protein intake met SCI-specific protein guidelines. Persons with chronic SCI (n = 43) completed 3-day food records to assess EEI and dietary protein intake. EER was determined with the Long and Institute of Medicine (IOM) methods and the SCI-specific Farkas method. Protein requirements were calculated as 0·8–1·0 g/kg of body weight (BW)/d. Reporting accuracy and bias were calculated and correlated to body composition. Compared with IOM and Long methods (P < 0·05), the SCI-specific method did not overestimate the EEI (P = 0·200). Reporting accuracy and bias were best for SCI-specific (98·9 %, −1·12 %) compared with Long (94·8 %, −5·24 %) and IOM (64·1 %, −35·4 %) methods. BW (r = –0·403), BMI (r = –0·323) and total fat mass (r = –0·346) correlated with the IOM reporting bias (all, P < 0·05). BW correlated with the SCI-specific and Long reporting bias (r = –0·313, P = 0·041). Seven (16 %) participants met BW-specific protein guidelines. The regression of dietary protein intake on BW demonstrated no association between the variables (β = 0·067, P = 0·730). In contrast, for every 1 kg increase in BW, the delta between total and required protein intake decreased by 0·833 g (P = 0·0001). The SCI-specific method for EER had the best agreement with the EEI. Protein intake decreased with increasing BW, contrary to protein requirements for chronic SCI.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Passed away in August 2022.

References

Zeilig, G, Dolev, M, Weingarden, H et al. (2000) Long-term morbidity and mortality after spinal cord injury: 50 years of follow-up. Spinal Cord 38, 563566.CrossRefGoogle ScholarPubMed
Cadotte, DW & Fehlings, MG (2011) Spinal cord injury: a systematic review of current treatment options. Clin Orthop Relat Res 469, 732741.CrossRefGoogle ScholarPubMed
Bauman, WA & Spungen, AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43, 749756.CrossRefGoogle ScholarPubMed
Modlesky, CM, Bickel, CS, Slade, JM et al. (2004) Assessment of skeletal muscle mass in men with spinal cord injury using dual-energy X-ray absorptiometry and magnetic resonance imaging. J Appl Physiol 96, 561565.CrossRefGoogle ScholarPubMed
McMillan, DW, Nash, MS, Gater, DR Jr et al. (2021) Neurogenic obesity and skeletal pathology in spinal cord injury. Top Spinal Cord Inj Rehabil 27, 5767.CrossRefGoogle ScholarPubMed
Buchholz, AC & Pencharz, PB (2004) Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care 7, 635639.CrossRefGoogle ScholarPubMed
Mollinger, LA, Spurr, GB, el Ghatit, AZ et al. (1985) Daily energy expenditure and basal metabolic rates of patients with spinal cord injury. Arch Phys Med Rehabil 66, 420426.Google ScholarPubMed
Nightingale, TE & Gorgey, AS (2018) Predicting basal metabolic rate in men with motor complete spinal cord injury. Med Sci Sports Exerc 50, 13051312.CrossRefGoogle ScholarPubMed
Farkas, GJ, Gordon, PS, Swartz, AM et al. (2020) Influence of mid and low paraplegia on cardiorespiratory fitness and energy expenditure. Spinal Cord Ser Cases 6, 110.CrossRefGoogle ScholarPubMed
Monroe, MB, Tataranni, PA, Pratley, R et al. (1998) Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am J Clin Nutr 68, 12231227.CrossRefGoogle ScholarPubMed
Nightingale, TE, Williams, S, Thompson, D et al. (2017) Energy balance components in persons with paraplegia: daily variation and appropriate measurement duration. Int J Behav Nutr Phys Act 14, 132.CrossRefGoogle ScholarPubMed
Asahara, R & Yamasaki, M (2016) The thermic response to food intake in persons with thoracic spinal cord injury. J Phys Ther Sci 28, 10801085.CrossRefGoogle ScholarPubMed
Buchholz, AC, McGillivray, CF & Pencharz, PB (2003) Differences in resting metabolic rate between paraplegic and able-bodied subjects are explained by differences in body composition. Am J Clin Nutr 77, 371378.CrossRefGoogle ScholarPubMed
Aksnes, AK, Brundin, T, Hjeltnes, N et al. (1993) Meal-induced rise in resting energy-expenditure in patients with complete cervical spinal-cord lesions. Paraplegia 31, 462472.Google ScholarPubMed
Spungen, AM, Wang, J, Pierson, RN et al. (2000) Soft tissue body composition differences in monozygotic twins discordant for spinal cord injury. J Appl Physiol 88, 13101315.CrossRefGoogle ScholarPubMed
Moore, CD, Craven, BC, Thabane, L et al. (2015) Lower-extremity muscle atrophy and fat infiltration after chronic spinal cord injury. J Musculoskelet Neuronal Interact 15, 3241.Google ScholarPubMed
Vink, RG, Roumans, NJ, Arkenbosch, LA et al. (2016) The effect of rate of weight loss on long-term weight regain in adults with overweight and obesity. Obesity (Silver Spring) 24, 321327.CrossRefGoogle ScholarPubMed
Soenen, S, Martens, EA, Hochstenbach-Waelen, A et al. (2013) Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass. J Nutr 143, 591596.CrossRefGoogle ScholarPubMed
Hopkins, M, Finlayson, G, Duarte, C et al. (2016) Modelling the associations between fat-free mass, resting metabolic rate and energy intake in the context of total energy balance. Int J Obes (Lond) 40, 312318.CrossRefGoogle ScholarPubMed
Dulloo, AG, Jacquet, J, Miles-Chan, JL et al. (2017) Passive and active roles of fat-free mass in the control of energy intake and body composition regulation. Eur J Clin Nutr 71, 353357.CrossRefGoogle ScholarPubMed
Farkas, GJ, Gorgey, AS, Dolbow, DR et al. (2019) Caloric intake relative to total daily energy expenditure using a spinal cord injury-specific correction factor: an analysis by level of injury. Am J Phys Med Rehabil 98, 947952.CrossRefGoogle ScholarPubMed
Livingstone, MB & Black, AE (2003) Markers of the validity of reported energy intake. J Nutr 133, 895s920s.CrossRefGoogle ScholarPubMed
Heymsfield, SB, Harp, JB, Rowell, PN et al. (2006) How much may I eat? Calorie estimates based upon energy expenditure prediction equations. Obes Rev 7, 361370.CrossRefGoogle ScholarPubMed
International Atomic Energy Agency (2009) Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques. Vienna: International Atomic Energy Agency.Google Scholar
Speakman, JR, Yamada, Y, Sagayama, H et al. (2021) A standard calculation methodology for human doubly labeled water studies. Cell Rep Med 2, 100203.CrossRefGoogle ScholarPubMed
Farkas, GJ, Pitot, MA & Gater, DR Jr (2019) A systematic review of the accuracy of estimated and measured resting metabolic rate in chronic spinal cord injury. Int J Sport Nutr Exerc Metab 29, 548558.CrossRefGoogle ScholarPubMed
Gorgey, AS, Caudill, C, Sistrun, S et al. (2015) Frequency of dietary recalls, nutritional assessment, and body composition assessment in men with chronic spinal cord injury. Arch Phys Med Rehabil 96, 16461653.CrossRefGoogle ScholarPubMed
Long, CL, Schaffel, N, Geiger, JW et al. (1979) Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. J Parenter Enteral Nutra 3, 452456.CrossRefGoogle ScholarPubMed
Institute of Medicine of the National Academies (2006) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: Institute of Medicine of the National Academies.Google Scholar
FAO/WHO/UNU (1985) Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser 724, 1206.Google Scholar
English, KL & Paddon-Jones, D (2010) Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care 13, 3439.CrossRefGoogle ScholarPubMed
Pellicane, AJ, Millis, SR, Zimmerman, SE et al. (2013) Calorie and protein intake in acute rehabilitation inpatients with traumatic spinal cord injury v. other diagnoses. Top Spinal Cord Inj Rehabil 19, 229235.CrossRefGoogle Scholar
Rodriguez, DJ, Benzel, EC & Clevenger, FW (1997) The metabolic response to spinal cord injury. Spinal Cord 35, 599604.CrossRefGoogle ScholarPubMed
Rodriguez, DJ, Clevenger, FW, Osler, TM et al. (1991) Obligatory negative nitrogen balance following spinal cord injury. JPEN J Parenter Enteral Nutr 15, 319322.CrossRefGoogle ScholarPubMed
American Dietetic Association (2009) Spinal Cord Injury (SCI) Evidenced-Based Nutrition Practice Guideline. Chicago, IL: American Dietetic Association.Google Scholar
Farkas, GJ, Pitot, MA, Berg, AS et al. (2019) Nutritional status in chronic spinal cord injury: a systematic review and meta-analysis. Spinal Cord 57, 317.CrossRefGoogle ScholarPubMed
Gater, DR Jr, Farkas, GJ, Dolbow, DR et al. (2021) Body composition and metabolic assessment after motor complete spinal cord injury: development of a clinically relevant equation to estimate body fat. Top Spinal Cord Inj Rehabil 27, 1122.CrossRefGoogle ScholarPubMed
Kirshblum, SC, Burns, SP, Biering-Sorensen, F et al. (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34, 535546.CrossRefGoogle ScholarPubMed
Farkas, GJ, Sneij, A, McMillan, DW et al. (2021) Energy expenditure and nutrient intake after spinal cord injury: a comprehensive review and practical recommendations. Br J Nutr 128, 863887.CrossRefGoogle ScholarPubMed
Gorgey, AS, Mather, KJ, Cupp, HR et al. (2012) Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc 44, 165174.CrossRefGoogle ScholarPubMed
Gorgey, AS & Gater, DR (2011) Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Appl Physiol Nutr Metab 36, 107114.CrossRefGoogle ScholarPubMed
Gorgey, AS, Chiodo, AE, Zemper, ED et al. (2010) Relationship of spasticity to soft tissue body composition and the metabolic profile in persons with chronic motor complete spinal cord injury. J Spinal Cord Med 33, 615.CrossRefGoogle ScholarPubMed
Black, AE, Coward, WA, Cole, TJ et al. (1996) Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 50, 7292.Google ScholarPubMed
Collins, EG, Gater, D, Kiratli, BJ et al. (2010) Energy cost of physical activities in persons with spinal cord injury. Med Sci Sports Exerc 42, 691700.CrossRefGoogle ScholarPubMed
Dearwater, SR, Laporte, RE, Robertson, RJ et al. (1986) Activity in the spinal cord-injured patient - an epidemiologic analysis of metabolic parameters. Med Sci Sports Exerc 18, 541544.CrossRefGoogle ScholarPubMed
Jacobs, PL & Nash, MS (2004) Exercise recommendations for individuals with spinal cord injury. Sports Med 34, 727751.CrossRefGoogle ScholarPubMed
Noreau, L, Shephard, RJ, Simard, C et al. (1993) Relationship of impairment and functional ability to habitual activity and fitness following spinal cord injury. Int J Rehabil Res 16, 265275.CrossRefGoogle ScholarPubMed
Wickham, H (2016) ggplot2: Elegant Graphics for Data Analysis. New York: Springer International Publishing.CrossRefGoogle Scholar
Krouwer, JS (2008) Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med 27, 778780.CrossRefGoogle Scholar
Bland, JM & Altman, DG (1999) Statistical methods in medical research. Stat Methods Med Res 8, 161179.Google Scholar
Kaczkowski, CH, Jones, PJ, Feng, J et al. (2000) Four-day multimedia diet records underestimate energy needs in middle-aged and elderly women as determined by doubly-labeled water. J Nutr 130, 802805.CrossRefGoogle ScholarPubMed
Trabulsi, J & Schoeller, DA (2001) Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am J Physiol Endocrinol Metab 281, E891E899.CrossRefGoogle Scholar
da Rocha, EE, Alves, VG, Silva, MH et al. (2005) Can measured resting energy expenditure be estimated by formulae in daily clinical nutrition practice? Curr Opin Clin Nutr Metab Care 8, 319328.CrossRefGoogle ScholarPubMed
Elia, M (1992) Organ and tissue contribution to metabolic rate. In Energy Metabolism: Tissue Determinants and Cellular Corollaries, pp. 6179 [Kinney, JM & Tucker, HN, editors]. New York: Raven Press.Google Scholar
Stubbs, RJ, Hopkins, M, Finlayson, GS et al. (2018) Potential effects of fat mass and fat-free mass on energy intake in different states of energy balance. Eur J Clin Nutr 72, 698709.CrossRefGoogle ScholarPubMed
Cox, SA, Weiss, SM, Posuniak, EA et al. (1985) Energy expenditure after spinal cord injury: an evaluation of stable rehabilitating patients. J Trauma 25, 419423.CrossRefGoogle ScholarPubMed
Desneves, KJ, Panisset, MG, Rafferty, J et al. (2019) Comparison of estimated energy requirements using predictive equations with total energy expenditure measured by the doubly labelled water method in acute spinal cord injury. Spinal Cord 57, 562570.CrossRefGoogle ScholarPubMed
Ravelli, MN & Schoeller, DA (2020) Traditional self-reported dietary instruments are prone to inaccuracies and new approaches are needed. Front Nutr 7, 90.CrossRefGoogle ScholarPubMed
Subar, AF, Freedman, LS, Tooze, JA et al. (2015) Addressing current criticism regarding the value of self-report dietary data. J Nutr 145, 26392645.CrossRefGoogle ScholarPubMed
Braam, LA, Ocké, MC, Bueno-de-Mesquita, HB et al. (1998) Determinants of obesity-related underreporting of energy intake. Am J Epidemiol 147, 10811086.CrossRefGoogle ScholarPubMed
Murakami, K & Livingstone, MB (2015) Prevalence and characteristics of misreporting of energy intake in US adults: NHANES 2003–2012. Br J Nutr 114, 12941303.CrossRefGoogle ScholarPubMed
Wehling, H & Lusher, J (2019) People with a body mass index ≥ 30 under-report their dietary intake: a systematic review. J Health Psychol 24, 20422059.CrossRefGoogle ScholarPubMed
Krebs-Smith, SM, Graubard, BI, Kahle, LL et al. (2000) Low energy reporters v. others: a comparison of reported food intakes. Eur J Clin Nutr 54, 281287.CrossRefGoogle Scholar
Bingham, SA & Day, NE (1997) Using biochemical markers to assess the validity of prospective dietary assessment methods and the effect of energy adjustment. Am J Clin Nutr 65, 1130s1137s.CrossRefGoogle ScholarPubMed
Poppitt, SD, Swann, D, Black, AE et al. (1998) Assessment of selective under-reporting of food intake by both obese and non-obese women in a metabolic facility. Int J Obes Relat Metab Disord 22, 303311.CrossRefGoogle Scholar
Farkas, GJ, Burton, AM, McMillan, DW et al. (2022) The diagnosis and management of cardiometabolic risk and cardiometabolic syndrome after spinal cord injury. J Pers Med 12, 1088.CrossRefGoogle ScholarPubMed
Tang, M, Armstrong, CL, Leidy, HJ et al. (2013) Normal v. high-protein weight loss diets in men: effects on body composition and indices of metabolic syndrome. Obesity (Silver Spring) 21, E204E210.CrossRefGoogle Scholar
Westerterp-Plantenga, MS, Nieuwenhuizen, A, Tomé, D et al. (2009) Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr 29, 2141.CrossRefGoogle ScholarPubMed
Moizé, V, Andreu, A, Rodríguez, L et al. (2013) Protein intake and lean tissue mass retention following bariatric surgery. Clin Nutr 32, 550555.CrossRefGoogle ScholarPubMed
Schollenberger, AE, Karschin, J, Meile, T et al. (2016) Impact of protein supplementation after bariatric surgery: a randomized controlled double-blind pilot study. Nutrition 32, 186192.CrossRefGoogle ScholarPubMed
Li, J, Gower, B, McLain, A et al. (2022) Effects of a low-carbohydrate/high-protein diet on metabolic health in individuals with chronic spinal cord injury: an exploratory analysis of results from a randomized controlled trial. Physiol Rep 10, e15501.CrossRefGoogle ScholarPubMed
Morell, P & Fiszman, S (2017) Revisiting the role of protein-induced satiation and satiety. Food Hydrocolloids 68, 199210.CrossRefGoogle Scholar
Drummen, M, Tischmann, L, Gatta-Cherifi, B et al. (2018) Dietary protein and energy balance in relation to obesity and co-morbidities. Front Endocrinol (Lausanne) 9, 443.CrossRefGoogle ScholarPubMed
Westerterp-Plantenga, MS, Lemmens, SG & Westerterp, KR (2012) Dietary protein – its role in satiety, energetics, weight loss and health. Br J Nutr 108, S105S112.CrossRefGoogle ScholarPubMed
Mattos, CB, Viana, LV, Paula, TP et al. (2015) Increased protein intake is associated with uncontrolled blood pressure by 24-hour ambulatory blood pressure monitoring in patients with type 2 diabetes. J Am Coll Nutr 34, 232239.CrossRefGoogle ScholarPubMed