Skip to main content
×
×
Home

Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis

  • Mijin Lee (a1), Hanna Lee (a2) and Jihye Kim (a1)
Abstract

A systematic review and a meta-analysis of observational studies were performed to assess the dose–response relationship between specific types of dairy foods and the risk of the metabolic syndrome (MetS) and its components. Studies of dairy foods and the risk of the MetS and its components published up to June 2016 were searched using PubMed, EMBASE and a reference search. Random-effects models were used to estimate the pooled relative risks (RR) with 95 % CI. Finally, ten cross-sectional studies, two nested case–control studies and twenty-nine cohort studies were included for the analysis. In a dose–response analysis of cohort studies and cross-sectional studies, the pooled RR of the MetS for a one-serving/d increment of total dairy food (nine studies) and milk (six studies) consumption (200 g/d) were 0·91 (95 % CI 0·85, 0·96) and 0·87 (95 % CI 0·79, 0·95), respectively. The pooled RR of the MetS for yogurt (three studies) consumption (100 g/d) was 0·82 (95 % CI 0·73, 0·91). Total dairy food consumption was associated with lower risk of MetS components, such as hyperglycaemia, elevated blood pressure, hypertriacylglycerolaemia and low HDL- cholesterol. A one-serving/d increment of milk was related to a 12 % lower risk of abdominal obesity, and a one-serving/d increment of yogurt was associated with a 16 % lower risk of hyperglycaemia. These associations were not significantly different by study design, study location or adjustment factors. This meta-analysis showed that specific types of dairy food consumption such as milk and yogurt as well as total dairy food consumption were inversely related to risk of the MetS and its components.

Copyright
Corresponding author
* Corresponding author: J. Kim, email kjhye@khu.ac.kr
References
Hide All
1. Lutsey, PL, Steffen, LM & Stevens, J (2008) Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 117, 754761.
2. Mozumdar, A & Liguori, G (2011) Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care 34, 216219.
3. Nestel, P, Lyu, R, Low, LP, et al. (2007) Metabolic syndrome: recent prevalence in East and Southeast Asian populations. Asia Pac J Clin Nutr 16, 362367.
4. Kaduka, LU, Kombe, Y, Kenya, E, et al. (2012) Prevalence of metabolic syndrome among an urban population in Kenya. Diabetes Care 35, 887893.
5. Chung, SJ, Lee, Y, Lee, S, et al. (2015) Breakfast skipping and breakfast type are associated with daily nutrient intakes and metabolic syndrome in Korean adults. Nutr Res Pract 9, 288295.
6. Huo Yung Kai, S, Bongard, V, Simon, C, et al. (2014) Low-fat and high-fat dairy products are differently related to blood lipids and cardiovascular risk score. Eur J Prev Cardiol 21, 15571567.
7. Shin, H, Yoon, YS, Lee, Y, et al. (2013) Dairy product intake is inversely associated with metabolic syndrome in Korean adults: Anseong and Ansan cohort of the Korean Genome and Epidemiology Study. J Korean Med Sci 28, 14821488.
8. Fumeron, F, Lamri, A, Abi Khalil, C, et al. (2011) Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: results from a french prospective study, data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 34, 813817.
9. Ruidavets, JB, Bongard, V, Dallongeville, J, et al. (2007) High consumptions of grain, fish, dairy products and combinations of these are associated with a low prevalence of metabolic syndrome. J Epidemiol Community Health 61, 810817.
10. Liu, S, Song, Y, Ford, ES, et al. (2005) Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 28, 29262932.
11. Azadbakht, L, Mirmiran, P, Esmaillzadeh, A, et al. (2005) Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr 82, 523530.
12. Pereira, MA, Jacobs, DR Jr, Van Horn, L, et al. (2002) Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 287, 20812089.
13. Drehmer, M, Pereira, MA, Schmidt, MI, et al. (2016) Total and full-fat, but not low-fat, dairy product intakes are inversely associated with metabolic syndrome in adults. J Nutr 146, 8189.
14. Babio, N, Becerra-Tomas, N, Martinez-Gonzalez, MA, et al. (2015) Consumption of yogurt, low-fat milk, and other low-fat dairy products is associated with lower risk of metabolic syndrome incidence in an elderly Mediterranean population. J Nutr 145, 23082316.
15. Martins, ML, Kac, G, Silva, RA, et al. (2015) Dairy consumption is associated with a lower prevalence of metabolic syndrome among young adults from Ribeirao Preto, Brazil. Nutrition 31, 716721.
16. Louie, JC, Flood, VM, Rangan, AM, et al. (2013) Higher regular fat dairy consumption is associated with lower incidence of metabolic syndrome but not type 2 diabetes. Nutr Metab Cardiovasc Dis 23, 816821.
17. Chen, GC, Szeto, IM, Chen, LH, et al. (2015) Dairy products consumption and metabolic syndrome in adults: systematic review and meta-analysis of observational studies. Sci Rep 5, 14606.
18. Kim, Y & Je, Y (2016) Dairy consumption and risk of metabolic syndrome: a meta-analysis. Diabet Med 33, 428440.
19. Kwon, HT, Lee, CM, Park, JH, et al. (2010) Milk intake and its association with metabolic syndrome in Korean: analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). J Korean Med Sci 25, 14731479.
20. Elwood, PC, Pickering, JE & Fehily, AM (2007) Milk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. J Epidemiol Community Health 61, 695698.
21. Damiao, R, Castro, TG, Cardoso, MA, et al. (2006) Dietary intakes associated with metabolic syndrome in a cohort of Japanese ancestry. Br J Nutr 96, 532538.
22. Kim, J (2013) Dairy food consumption is inversely associated with the risk of the metabolic syndrome in Korean adults. J Hum Nutr Diet 26, Suppl. 1, 171179.
23. Sayon-Orea, C, Bes-Rastrollo, M, Marti, A, et al. (2015) Association between yogurt consumption and the risk of metabolic syndrome over 6 years in the SUN study. BMC Public Health 15, 170.
24. Struijk, EA, Heraclides, A, Witte, DR, et al. (2013) Dairy product intake in relation to glucose regulation indices and risk of type 2 diabetes. Nutr Metab Cardiovasc Dis 23, 822828.
25. Engberink, MF, Geleijnse, JM, de Jong, N, et al. (2009) Dairy intake, blood pressure, and incident hypertension in a general Dutch population. J Nutr 139, 582587.
26. Engberink, MF, Hendriksen, MA, Schouten, EG, et al. (2009) Inverse association between dairy intake and hypertension: the Rotterdam Study. Am J Clin Nutr 89, 18771883.
27. Heraclides, A, Mishra, GD, Hardy, RJ, et al. (2012) Dairy intake, blood pressure and incident hypertension in a general British population: the 1946 birth cohort. Eur J Nutr 51, 583591.
28. Wells, G, Shea, B, O’Connell, D, et al. (2017) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohrica/programs/clinical_epidemiology/oxford.asp. (accessed April 2017).
29. Von Elm, E, Altman, DG, Egger, M, et al. (2014) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg 12, 14951499.
30. DerSimonian, R & Laird, N (1986) Meta-analysis in clinical trials. Control Clin Trials 7, 177188.
31. Crichton, GE & Alkerwi, A (2014) Whole-fat dairy food intake is inversely associated with obesity prevalence: findings from the Observation of Cardiovascular Risk Factors in Luxembourg study. Nutr Res 34, 936943.
32. Grantham, NM, Magliano, DJ, Hodge, A, et al. (2013) The association between dairy food intake and the incidence of diabetes in Australia: the Australian Diabetes Obesity and Lifestyle Study (AusDiab). Public Health Nutr 16, 339345.
33. Liu, S, Choi, HK, Ford, E, et al. (2006) A prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes Care 29, 15791584.
34. Choi, HK, Willett, WC, Stampfer, MJ, et al. (2005) Dairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch Intern Med 165, 9971003.
35. Funtikova, AN, Subirana, I, Gomez, SF, et al. (2015) Soft drink consumption is positively associated with increased waist circumference and 10-year incidence of abdominal obesity in Spanish adults. J Nutr 145, 328334.
36. Satija, A, Agrawal, S, Bowen, L, et al. (2013) Association between milk and milk product consumption and anthropometric measures in adult men and women in India: a cross-sectional study. PLOS ONE 8, e60739.
37. Kirii, K, Mizoue, T, Iso, H, et al. (2009) Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia 52, 25422550.
38. Greenland, S & Longnecker, MP (1992) Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol 135, 13011309.
39. Orsini, N, Bellocco, R & Greenland, S (2006) Generalized least squares for trend estimation of summarized dose–response data. Stata J 6, 4057.
40. Higgins, JP & Thompson, SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21, 15391558.
41. Egger, M, Davey Smith, G, Schneider, M, et al. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629634.
42. International Diabetes Federation Clinical Guidelines Task Force (2006) Global guideline for type 2 diabetes: recommendations for standard, comprehensive, and minimal care. Diabet Med 23, 579593.
43. Grundy, SM, Cleeman, JI, Daniels, SR, et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 27352752.
44. National Cholesterol Education Program Expert Panel on Detection Evaluation Treatment of High Blood Cholesterol in Adults (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106, 31433421.
45. Alberti, KG, Eckel, RH, Grundy, SM, et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 16401645.
46. Zemel, MB, Richards, J, Milstead, A, et al. (2005) Effects of calcium and dairy on body composition and weight loss in African-American adults. Obes Res 13, 12181225.
47. Ralston, RA, Lee, JH, Truby, H, et al. (2012) A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods. J Hum Hypertens 26, 313.
48. Kim, D & Kim, J (2017) Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: the Korean Genome and Epidemiology Study (KoGES). Br J Nutr 117, 148160.
49. Turner, KM, Keogh, JB & Clifton, PM (2015) Dairy consumption and insulin sensitivity: a systematic review of short- and long-term intervention studies. Nutr Metab Cardiovasc Dis 25, 38.
50. Abdullah, MM, Cyr, A, Lepine, MC, et al. (2015) Recommended dairy product intake modulates circulating fatty acid profile in healthy adults: a multi-centre cross-over study. Br J Nutr 113, 435444.
51. Boon, N, Hul, GB, Stegen, JH, et al. (2007) An intervention study of the effects of calcium intake on faecal fat excretion, energy metabolism and adipose tissue mRNA expression of lipid-metabolism related proteins. Int J Obes (Lond) 31, 17041712.
52. Reid, IR, Mason, B, Horne, A, et al. (2002) Effects of calcium supplementation on serum lipid concentrations in normal older women: a randomized controlled trial. Am J Med 112, 343347.
53. Welberg, JW, Monkelbaan, JF, de Vries, EG, et al. (1994) Effects of supplemental dietary calcium on quantitative and qualitative fecal fat excretion in man. Ann Nutr Metab 38, 185191.
54. Choi, J, Sabikni, L & Hassan, A (2012) Bioactive peptides in dairy products. Int J Dairy Technol 65, 112.
55. Nilsson, M, Holst, JJ & Bjorck, IM (2007) Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 85, 9961004.
56. Ricci-Cabello, I, Herrera, MO & Artacho, R (2012) Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr Rev 70, 241255.
57. Schurgers, LJ & Vermeer, C (2000) Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 30, 298307.
58. Beulens, JW, van der, AD, Grobbee, DE, et al. (2010) Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 33, 16991705.
59. van Meijl, LE & Mensink, RP (2011) Low-fat dairy consumption reduces systolic blood pressure, but does not improve other metabolic risk parameters in overweight and obese subjects. Nutr Metab Cardiovasc Dis 21, 355361.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Lee et al. supplementary material
Table S1

 Word (54 KB)
54 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 9
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 3396 *
Loading metrics...

* Views captured on Cambridge Core between 6th June 2018 - 23rd June 2018. This data will be updated every 24 hours.