Skip to main content Accessibility help
×
Home

Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations

  • E. J. Parks (a1)

Abstract

The process by which dietary carbohydrate is transformed into fat in the human body is termed de novo lipogenesis. New methods for the measurement of this process in humans are available and have been used to investigate the role of the carbohydrate form (fed as a liquid or solid), the level of processing of carbohydrate in foods, and the role of lipogenesis in the control of liver triacylglycerol secretion. The present paper will discuss how research results are affected by both the physical state of the carbohydrate in the diet and by the metabolic state of individual research subjects. Of interest is the relationship between the glycemic index of a food (or indicators of a food's glycemic index) and that food's ability to stimulate lipogenesis in humans. Given the increasing prevalence of obesity worldwide, future scientific emphasis will expand methods to quantitate the lipogenic potential of specific foods and dietary patterns and investigate how the metabolic state of insulin resistance affects lipogenesis and/or contributes to obesity.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr E. J. Parks, tel +1 612 625 1785, fax +1 612 625 5272, email eparks@umn.edu

References

Hide All
Austin, MA (1998) Plasma triglyceride as a risk factor for cardiovascular disease. Canadian Journal of Cardiology 13, 14B17B.
Austin, MA, Breslow, JL, Hennekens, CH, Buring, JE, Willett, WC & Krauss, RM (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. Journal of the American Medical Association 260, 19171921.
Brighenti, F, Casiraghi, MC, Canzi, E & Ferrari, A (1999) Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers. European Journal of Clinical Nutrition 53, 726733.
Brinton, EA, Eisenberg, S & Breslow, JL (1990) A low-fat diet decreases high-density lipoprotein (HDL) cholesterol levels by decreasing HDL apolipoprotein transport rates. Journal of Clinical Investigation 85, 144151.
Brown, BG, Zhao, X-Q & Maher, VMG (1995) HDL cholesterol as a therapeutic target in coronary disease: current concepts and future directions in HDL deficiency and atherosclerosis. In Developments in Cardiovascular Medicine, Vol. 174, pp. 2442 [Assan, G, editor]. Boston, MA: Kluwer Academic Publishers.
Brunzell, JD, Schrott, HG, Motulsky, AG & Bierman, EL (1976) Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism, Clinical and Experimental 25, 313320.
Chen, YDI, Coulston, AM, Zhou, MY, Hollenbeck, CB & Reaven, GM (1995) Why do low-fat, high-carbohydrate diets accentuate postprandial lipemia in patients with NIDDM? Diabetes Care 18, 1016.
Coulston, AM, Hollenbeck, CB, Swislocki, AL & Reaven, GM (1989) Persistence of hypertriglyceridemic effects of low-fat, high-carbohydrate diets in NIDDM. Diabetes Care 12, 94100.
Dreon, DM, Fernstrom, HA, Miller, B & Krauss, RM (1994) Low-density lipoprotein subclass pattern and lipoprotein response to a reduced-fat diet in men. FASEB Journal 8, 121126.
Dreon, DM, Fernstrom, HA, Williams, PT & Krauss, RM (1999) A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. American Journal of Clinical Nutrition 69, 411418.
Dreon, DM, Fernstrom, HA, Williams, PT & Krauss, RM (2000) Reduced LDL particle size in children consuming a very low-fat diet is related to parental LDL-subclass patterns. American Journal of Clinical Nutrition 71, 16111616.
Gambera, PJ, Schneeman, BO & Davis, PA (1995) Use of the Food Guide Pyramid and US Dietary Guidelines to improve dietary intake and reduce cardiovascular risk in active-duty Air Force members. Journal of the American Dietetic Association 95, 12681273.
Ginsberg, HN, Jones, J, Blaner, WS, Thomas, A, Karmally, W, Fields, L, Blood, D & Begg, MD (1995) Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arteriosclerosis Thrombosis and Vascular Biology 15, 18291838.
Hellerstein, MK (1995) Methods for measurement of fatty acid and cholesterol metabolism. Current Opinion in Lipidology 6, 172181.
Hellerstein, MK, Schwarz, JM & Neese, RA (1996) Regulation of hepatic de novo lipogenesis in humans. Annual Review of Nutrition 16, 523557.
Hudgins, L, Hellerstein, M, Seldman, C, Diakun, J & Hirsch, J (1993) Increased de novo lipogenesis on a eucaloric low fat, high carbohydrate diet does not alter energy expenditure. Obesity Research 1, 92S, (abstr).
Hudgins, LC, Hellerstein, MK, Seidman, CE, Neese, RA, Tremaroli, JD & Hirsch, J (2000) Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. Journal of Lipid Research 41, 595604.
Jackson, RL, Yates, MT, McNerney, CA & Kashyap, ML (1987) Diet and HDL metabolism: high carbohydrate vs. high fat diets. Advances in Experimental Medicine and Biology 210, 165172.
Jeppesen, J, Chen, YDI, Zhou, MY, Wang, T & Reaven, GM (1995) Effect of variations in oral fat and carbohydrate load on postprandial lipemia. American Journal of Clinical Nutrition 62, 12011205.
Jones, PJH (1996) Tracing lipogenesis in humans using deuterated water. Journal of Physiology and Pharmacology 74, 755760.
Kasim-Karakas, SE, Almario, RU, Mueller, WM & Peterson, J (2000) Changes in plasma lipoproteins during low-fat, high-carbohydrate diets: effects of energy intake. American Journal of Clinical Nutrition 71, 14391447.
Kissebah, AH, Alfarsi, S & Adams, PW (1981) Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metabolism 30, 856868.
Laws, A & Reaven, GM (1992) Evidence for an independent relationship between insulin resistance and fasting plasma HDL-cholesterol, triglyceride and insulin concentrations. Journal of Internal Medicine 231, 2530.
Lichtenstein, AH & Van Horn, L (1998) Very low fat diets. Circulation 98, 935939.
Parks, E & Hellerstein, MK (2000) Carbohydrate-induced hypertriacylglycerolemia: An historical perspective and review of biological mechanisms. American Journal of Clinical Nutrition 71, 412433.
Parks, EJ (2002) The relationship of the glycemic index to lipogenesis in humans. In Proceedings of the 6th (Millenium) Vahouny Conference, [Kritchevsky, D, editor]. Kluwer/Plenum Press (in press).
Parks, EJ, German, JB, Davis, PA, Frankel, EN, Kappagoda, CT, Rutledge, JC, Hyson, DA & Schneeman, BO (1998) Reduced susceptibility of LDL from patients participating in an intensive atherosclerosis treatment program. American Journal of Clinical Nutrition 68, 778785.
Parks, EJ, Krauss, RM, Christiansen, MP, Neese, RA & Hellerstein, MK (1999) Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production and clearance. Journal of Clinical Investigation 104, 10871096.
Parks, EJ, Rutledge, JC, Davis, PA, Hyson, DA, Schneeman, BO & Kappagoda, CT (2001) Predictors of plasma triglyceride elevation in patients participating in a coronary atherosclerosis treatment program. Journal of Cardiopulmonary Rehabilitation 21, 7379.
Patsch, JR, Miesenbock, G, Hopferwieser, T, Muhlberger, V, Knapp, E, Dunn, JK, Gotto, AM & Patsche, W (1992) Relations of triglyceride metabolism and coronary artery disease: studies in the postprandial state. Arteriosclerosis and Thrombosis 12, 13361345.
Sheppard, L, Kristal, AR & Kushi, LH (1991) Weight loss in women participating in a randomized trial of low-fat diets. American Journal of Clinical Nutrition 54, 821828.
Siler, SQ, Neese, RA, Parks, EJ & Hellerstein, MK (1998) VLDL-triglyceride production after alcohol ingestion, studied using [2-13C1] glycerol. Journal of Lipid Research 39, 23192328.

Keywords

Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations

  • E. J. Parks (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed