Skip to main content

Dietary flavonoid intake and colorectal cancer: a case–control study

  • Janet A. M. Kyle (a1) (a2), Linda Sharp (a3) (a4), Julian Little (a3) (a5), Garry G. Duthie (a1) and Geraldine McNeill (a2)...

Diets rich in flavonoids may reduce the risk of developing colorectal cancer. Flavonoids are widely distributed in foods of plant origin, though in the UK tea is the main dietary source. Our objective was to evaluate any independent associations of total dietary and non-tea intake of four flavonoid subclasses and the risk of developing colorectal cancer in a tea-drinking population with a high colorectal cancer incidence. A population-based case–control study (264 cases with histologically confirmed incident colorectal cancer and 408 controls) was carried out. Dietary data gathered by FFQ were used to calculate flavonoid intake. Adjusted OR and 95 % CI were estimated by logistic regression. No linear association between risk of developing colorectal cancer and total dietary flavonol, procyanidin, flavon-3-ol or flavanone intakes was found, but non-tea flavonol intake was inversely associated with colorectal cancer risk (OR 0·6; 95 % CI 0·4, 1·0). Stratification by site of cancer and assessment of individual flavonols showed a reduced risk of developing colon but not rectal cancer with increasing non-tea quercetin intake (OR 0·5; 95 % CI 0·3, 0·8; Ptrend < 0·01). We concluded that flavonols, specifically quercetin, obtained from non-tea components of the diet may be linked with reduced risk of developing colon cancer.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary flavonoid intake and colorectal cancer: a case–control study
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary flavonoid intake and colorectal cancer: a case–control study
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary flavonoid intake and colorectal cancer: a case–control study
      Available formats
Corresponding author
*Corresponding author: Dr Janet A. M. Kyle, fax +44 1224 559348, email
Hide All
1World Health Organization (2003) Diet, Nutrition and the Prevention of Chronic Diseases. Joint WHO/FAO Expert Consultation. WHO Technical Report Series no. 916. Geneva: WHO.
2Information Services Division NHS National Services Scotland (2009) Cancer in Scotland Summary.
3World Cancer Research Fund & American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington, DC: AICR.
4Duijnhoven, FJB, De Mesquita, HB, Ferrari, P, et al. (2009) Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 89, 14411452.
5Smith-Warner, SA, Genkinger, J & Giovannucci, E (2000) Fruit and vegetable intake and cancer. In Nutritional Oncology, pp. 153184 [Herber, D, Blackburn, GL and Go, VLM, editors]. San Diego: Academic Press Inc.
6Nichenametla, SN, Taruscio, TG, Barney, DL, et al. (2006) A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 46, 161183.
7Lambert, JD, Hong, J, Yang, G, et al. (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81, Suppl., 284S291S.
8Surh, YJ, Kundu, JK, Na, HK, et al. (2005) Redox sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135, 2993S3001S.
9Duthie, SJ, Johnson, W & Dobson, VL (1997) The effect of dietary flavonoids on DNA damage (strand breaks and oxidized pyrimidines) and growth in human cells. Mutat Res 390, 141151.
10Sánchez de Medina, F, Vera, B, Gálvez, J, et al. (2002) Effect of quercitrin on the early stages of hapten induced colonic inflammation in the rat. Life Sci 70, 30973108.
11Kim, HP, Mani, I, Iversen, L, et al. (1998) Effects of naturally occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot Essent Fatty Acids 58, 1724.
12Kim, HP, Son, KH, Chang, HW, et al. (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96, 229245.
13Peng, G, Dixon, DA, Muga, SJ, et al. (2006) Green tea polyphenol ( − )-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 45, 309319.
14Daskiewicz, JB, Depeint, F, Viornery, L, et al. (2005) Effects of flavonoids on cell proliferation and caspase activation in a colonic cell line HT 29, SAR study. J Med Chem 48, 27902804.
15Franke, AA, Custer, LJ, Cooney, RV, et al. (2002) Inhibition of colonic aberrant crypt formation by the dietary flavonoids (+)-catechin and hesperidin. Adv Exp Med Biol 505, 123133.
16Gosse, F, Guyot, S, Roussi, S, et al. (2005) Chemopreventive properties of apple procyanidins on human colon cancer derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcingogenesis 26, 12911295.
17Williams, RJ, Spencer, JPE & Rice-Evans, C (2004) Flavonoids: antioxidants or signalling molecules? Free Rad Biol Med 36, 838849.
18Van Dross, R, Xue, Y, Knudson, A, et al. (2003) The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. J Nutr 133, 3800S3804S.
19Halliwell, B, Zhao, KC & Whiteman, M (2000) The gastrointestinal tract: a major site of antioxidant action? Free Radic Res 33, 819830.
20Lin, J, Zhang, SM, Wu, K, et al. (2006) Flavonoid intake and colorectal cancer risk in men and women. Am J Epidemiol 164, 644651.
21Hirvonen, T, Virtamo, J, Korhonen, P, et al. (2001) Flavonol and flavone intake and the risk of cancer in male smokers (Finland). Cancer Causes Control 12, 789796.
22Knekt, P, Jarvinen, R, Seppanen, R, et al. (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146, 223230.
23Knekt, P, Kumpulainen, J, Järvinen, R, et al. (2002) Flavonoid intake and risk of chronic disease. Am J Clin Nutr 76, 560568.
24Arts, ICW, Hollman, PCH, de Mesquita, HBB, et al. (2001) Dietary catechins and epithelial cancer incidence: the Zutphen elderly study. Int J Cancer 92, 298302.
25Arts, ICW, Jacobs, DR Jr, Gross, M, et al. (2002) Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women's Health Study (United States). Cancer Causes Control 13, 373382.
26Kyle, JAM & Duthie, GG (2006) Flavonoids in foods. In Flavonoids; Chemistry, Biochemistry and Health Implications, pp. 219263 [Andersen, OM and Markham, K, editors]. New York: Taylor and Francis Group.
27Hertog, MGL, Hollman, PCH & Katan, MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in The Netherlands. J Agric Food Chem 40, 23792783.
28Rossi, M, Negri, E, Talamini, R, et al. (2006) Flavonoids and colorectal cancer in Italy. Cancer Epidemiol Biomarkers Prev 15, 15551558.
29Theodoratou, E, Kyle, J, Cetnarskyj, R, et al. (2007) Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 16, 684693.
30Scottish Health Service Advisory Council (1993) The Scottish Diet: Report of a Working Party to the Chief Medical Officer for Scotland. Edinburgh: Scottish Office Home and Health Department.
31McKie, L, MacInnes, A, Hendry, J, et al. (2000) The food consumption patterns and perceptions of dietary advice of older people. J Hum Nutr Diet 13, 173183.
32Turrini, A, Saba, A, Perrone, D, et al. (2001) Food consumption patterns in Italy: the INN-CA study 1994–1996. Eur J Clin Nutr 55, 571588.
33Little, J, Sharp, L, Masson, LF, et al. (2006) Colorectal cancer and genetic polymorphisms of CYP1A1, GSTM1 and GSTT1: a case–control study in the Grampian region of Scotland. Int J Cancer 119, 21552164.
34Food Standards Agency (2002) McCance and Widdowson's The Composition of Foods, 6th summary ed.Cambridge, UK: Royal Society of Chemistry.
35Kyle, J, Masson, L, Duthie, GG, et al. (2002) Estimating dietary flavonoid intake: comparison of a semi-quantitative food frequency questionnaire with 4-day weighed diet records in a Scottish population. Proc Nutr Soc 61, 69A.
36Masson, LF, McNeill, G, Tomany, JO, et al. (2003) Statistical approaches for assessing the relative validity of a food frequency questionnaire: use of correlation coefficients and the κ statistic. Public Health Nutr 6, 313321.
37Willett, W (1998) Implications of total energy intake for epidemiologic analyses. In Nutritional Epidemiology, 2nd ed., pp. 288291 [Willett, W, editor]. New York: Oxford University Press.
38Macfarlane, TV, Gray, RJM, Kincey, J, et al. (2007) Factors associated with the temporomandibular disorder, pain dysfunction syndrome (PDS): Manchester case–control study. Oral Dis 7, 321330.
39Department for Environment, Food and Rural Affairs (2007) Family Food – Report on the Expenditure of Food Survey. National Statistics Publication. London: The Stationery Office.
40United States Department of Agriculture (2003) USDA Database for the Flavonoid Content of Selected Foods. Beltsville, MD: USDA.
41Hertog, MGL, Hollman, PCH & van de Putte, B (1993) Content of potentially anticarcinogenic flavonoids of tea infusions, wines and fruit juices. J Agric Food Chem 41, 12421246.
42Arts, IC, van de Putte, B & Hollman, PC (2000) Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J Agric Food Chem 8, 17461751.
43Arts, IC, van De Putte, B & Hollman, PC (2000) Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem 48, 17521757.
44Kyle, JAM (2003) Flavonoids in health and disease. PhD Thesis, University of Aberdeen, UK.
45Hollman, PCH & Arts, ICW (2000) Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J Sci Food Agric 80, 10811093.
46Duthie, GG, Duthie, SJ & Kyle, JAM (2000) Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 13, 79106.
47Heim, KE, Tagliaferro, AR & Bobilya, DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13, 572584.
48Agullo, G, Gamet, L, Besson, C, et al. (1994) Quercetin exerts a preferential cytotoxic effect on active dividing colon carcinoma HT29 & Caco-2 cells. Cancer Lett 87, 5563.
49Kim, WK, Bang, MH, Kim, ES, et al. (2005) Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J Nutr Biochem 16, 155162.
50Park, CH, Chang, JY, Hahm, ER, et al. (2005) Quercetin, a potent inhibitor against β-catenin/Tcf signalling in SW480 colon cancer cells. Biochem Biophys Res Commun 328, 227234.
51Mouat, MF, Kolli, K, Orlando, R, et al. (2005) The effects of quercetin on SW480 human colon carcinoma cells: a proteomic study. Nutr J 4, 11.
52Wenzel, U, Hertzog, A, Kuntz, S, et al. (2004) Protein expression profiling identifies molecular targets of quercetin as a major dietary flavonoid in human colon cancer cells. Proteomics 4, 21602174.
53Dubé, C, Rostom, A, Lewin, G, et al. (2007) The use of aspirin for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med 146, 365375.
54Vane, JR & Botting, RM (1998) Anti-inflammatory drugs and their mechanism of action. Inflamm Res 47, S78S87.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 23
Total number of PDF views: 261 *
Loading metrics...

Abstract views

Total abstract views: 294 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.