Skip to main content Accessibility help
×
Home

Dietary patterns and risk of elevated C-reactive protein concentrations 12 years later

  • Chantal Julia (a1) (a2), Nathalie Meunier (a3), Mathilde Touvier (a1), Namanjeet Ahluwalia (a1), Vincent Sapin (a4), Isabelle Papet (a3) (a5), Noël Cano (a3), Serge Hercberg (a1) (a2), Pilar Galan (a1) and Emmanuelle Kesse-Guyot (a1)...

Abstract

Inflammation mediates several chronic diseases. Micronutrients can act on inflammation, either through modulating cytokine production or by scavenging by-products of activated white cells. Identifying dietary patterns (DP) reflecting these mechanisms and relating them to inflammation is of interest. The objective of the study was to identify DP specifically associated with intakes of nutrients potentially involved in inflammatory processes in a middle-aged population and investigate long-term associations between these DP and C-reactive protein (CRP) status assessed several years later. Subjects included in the Supplementation in Vitamins and Mineral Antioxidants 2 cohort study, having available data on dietary assessment carried out in 1994–5 and CRP measurement in 2007–9, were included in the analysis. DP were extracted with reduced rank regression (RRR), using antioxidant micronutrients and PUFA as response variables. Associations between CRP measurements >3 mg/l and extracted DP were then examined with logistic regression models providing OR and 95 % CI. A total of 2031 subjects (53·2 % women, mean follow-up duration: 12·5 years) were included in the analyses. Of the four extracted DP, a DP with high loading values of vegetables and vegetable oils, leading to high intakes of antioxidant micronutrients and essential fatty acids, was significantly and negatively associated with risk of elevated CRP (OR 0·88; 95 % CI 0·78, 0·98). Conversely, a DP reflecting a high n-6:n-3 fatty acid intake ratio was positively and significantly associated with elevated CRP (adjusted OR 1·15; 95 % CI 1·00, 1·32). DP extracted with RRR provide support for further exploration of relationships between dietary behaviour and inflammation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary patterns and risk of elevated C-reactive protein concentrations 12 years later
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary patterns and risk of elevated C-reactive protein concentrations 12 years later
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary patterns and risk of elevated C-reactive protein concentrations 12 years later
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: C. Julia, fax +33 148 388 931, email c.julia@uren.smbh.univ-paris13.fr

References

Hide All
1Calder, PC, Albers, R, Antoine, JM, et al. (2009) Inflammatory disease processes and interactions with nutrition. Br J Nutr 101, Suppl. 1, S145.
2Hotamisligil, GS (2006) Inflammation and metabolic disorders. Nature 444, 860867.
3Coussens, LM & Werb, Z (2002) Inflammation and cancer. Nature 420, 860867.
4Libby, P (2002) Inflammation in atherosclerosis. Nature 420, 868874.
5Rangel-Huerta, OD, Aguilera, CM, Mesa, MD, et al. (2012) Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials. Br J Nutr 107, S159S170.
6Luster, AD (1998) Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 338, 436445.
7Kehrer, JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23, 2148.
8Hensley, K, Robinson, KA, Gabbita, SP, et al. (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28, 14561462.
9Calder, PC (1998) Fat chance of immunomodulation. Immunol Today 19, 244247.
10Simopoulos, AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233, 674688.
11Conner, EM & Grisham, MB (1996) Inflammation, free radicals, and antioxidants. Nutrition 12, 274277.
12Nordberg, J & Arner, ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31, 12871312.
13Sies, H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82, 291295.
14Chew, BP (1993) Role of carotenoids in the immune response. J Dairy Sci 76, 28042811.
15Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
16Carter, SJ, Roberts, MB, Salter, J, et al. (2010) Relationship between Mediterranean Diet Score and atherothrombotic risk: findings from the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Atherosclerosis 210, 630636.
17Chrysohoou, C, Panagiotakos, DB, Pitsavos, C, et al. (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol 44, 152158.
18Cavicchia, PP, Steck, SE, Hurley, TG, et al. (2009) A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J Nutr 139, 23652372.
19Anderson, AL, Harris, TB, Tylavsky, FA, et al. (2012) Dietary patterns, insulin sensitivity and inflammation in older adults. Eur J Clin Nutr 66, 1824.
20Centritto, F, Iacoviello, L, di, GR, et al. (2009) Dietary patterns, cardiovascular risk factors and C-reactive protein in a healthy Italian population. Nutr Metab Cardiovasc Dis 19, 697706.
21Esmaillzadeh, A, Kimiagar, M, Mehrabi, Y, et al. (2007) Dietary patterns and markers of systemic inflammation among Iranian women. J Nutr 137, 992998.
22Fung, TT, Rimm, EB, Spiegelman, D, et al. (2001) Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 73, 6167.
23Heidemann, C, Hoffmann, K, Spranger, J, et al. (2005) A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study cohort. Diabetologia 48, 11261134.
24Hlebowicz, J, Persson, M, Gullberg, B, et al. (2011) Food patterns, inflammation markers and incidence of cardiovascular disease: the Malmo Diet and Cancer study. J Intern Med 270, 365376.
25Hoffmann, K, Zyriax, BC, Boeing, H, et al. (2004) A dietary pattern derived to explain biomarker variation is strongly associated with the risk of coronary artery disease. Am J Clin Nutr 80, 633640.
26Lopez-Garcia, E, Schulze, MB, Fung, TT, et al. (2004) Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 80, 10291035.
27Meyer, J, Doring, A, Herder, C, et al. (2011) Dietary patterns, subclinical inflammation, incident coronary heart disease and mortality in middle-aged men from the MONICA/KORA Augsburg cohort study. Eur J Clin Nutr 65, 800807.
28Nanri, H, Nakamura, K, Hara, M, et al. (2011) Association between dietary pattern and serum C-reactive protein in Japanese men and women. J Epidemiol 21, 122131.
29Nettleton, JA, Steffen, LM, Mayer-Davis, EJ, et al. (2006) Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 83, 13691379.
30Schulze, MB, Hoffmann, K, Manson, JE, et al. (2005) Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr 82, 675684.
31Nanri, A, Moore, MA & Kono, S (2007) Impact of C-reactive protein on disease risk and its relation to dietary factors. Asian Pac J Cancer Prev 8, 167177.
32Villegas, R, Xiang, YB, Cai, H, et al. (2012) Lifestyle determinants of C-reactive protein in middle-aged, urban Chinese men. Nutr Metab Cardiovasc Dis 22, 223230.
33Hercberg, S, Galan, P, Preziosi, P, et al. (2004) The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164, 23352342.
34Kesse-Guyot, E, Fezeu, L, Jeandel, C, et al. (2011) French adults' cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the Supplementation in Vitamins and Mineral Antioxidants (SU.VI.MAX) trial. Am J Clin Nutr 94, 892899.
35SU.VI.MAX (2006) Table de composition des aliments (Food Composition Table). Paris: Economica.
36Hoffmann, K, Schulze, MB, Schienkiewitz, A, et al. (2004) Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol 159, 935944.
37Willett, W & Stampfer, MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124, 1727.
38Pearson, TA, Mensah, GA, Alexander, RW, et al. (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499511.
39Calder, PC, Ahluwalia, N, Brouns, F, et al. (2011) Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 106, Suppl. 3, S578.
40Fernandez-Quintela, A, Churruca, I & Portillo, MP (2007) The role of dietary fat in adipose tissue metabolism. Public Health Nutr 10, 11261131.
41Dziedzic, B, Szemraj, J, Bartkowiak, J, et al. (2007) Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats. J Neuroendocrinol 19, 364373.
42Massiera, F, Saint-Marc, P, Seydoux, J, et al. (2003) Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 44, 271279.
43Poudyal, H, Panchal, SK, Diwan, V, et al. (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 50, 372387.
44Kopecky, J, Rossmeisl, M, Flachs, P, et al. (2009) n-3 PUFA: bioavailability and modulation of adipose tissue function. Proc Nutr Soc 68, 361369.
45Donahue, SM, Rifas-Shiman, SL, Gold, DR, et al. (2011) Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr 93, 780788.
46Ailhaud, G, Guesnet, P & Cunnane, SC (2008) An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development? Br J Nutr 100, 461470.

Keywords

Type Description Title
WORD
Supplementary materials

Julia Supplementary Material
Appendix

 Word (54 KB)
54 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed