1Walter, J, Britton, RA & Roos, S (2011) Host–microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 108, Suppl. 1, 4645–4652.
2Arumugam, M, Raes, J & Pelletier, E (2011) Enterotypes of the human gut microbiome. Nature 473, 173–180.
3Korecka, A & Arulampalam, V (2012) The gut microbiome: scourge, sentinel or spectator? J Oral Microbiol 4 .
4Ley, R, Hamady, M & Lozupone, C (2008) Evolution of mammals and their gut microbes. Science 320, 1647–1651.
5Ley, R, Turnbaugh, P, Klein, S, et al. (2006) Microbial ecology: human gut microbes assciated with obesity. Nature 444, 1022–1023.
6Sokol, H, Seksik, P, Furet, JP, et al. (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15, 1183–1189.
7Mariat, D, Firmesse, O, Levenez, F, et al. (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9, 123.
8Wen, L, Ley, RE, Volchkov, PY, et al. (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113.
9Giongo, A, Gano, KA, Crabb, DB, et al. (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5, 82–91.
10Fava, F, Gitau, R, Griffin, BA, et al. (2012) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes (Lond) .
11Caricilli, A, Picardi, P & de Abreu, L (2011) Gut microbiota is a key modulatator of insulin resistance in TLR2 knockout mice. PLoS Biol 9, 1–21.
12Blasbalg, TL, Hibbeln, JR, Ramsden, CE, et al. (2011) Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93, 950–962.
13Tjonneland, A, Overvad, K, Bergmann, MM, et al. (2009) Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case–control study within a European prospective cohort study. Gut 58, 1606–1611.
14Canete, R, Gil-Campos, M, Aguilera, CM, et al. (2007) Development of insulin resistance and its relation to diet in the obese child. Eur J Nutr 46, 181–187.
15Ramel, A, Martinez, A, Kiely, M, et al. (2008) Beneficial effects of long-chain n-3 fatty acids included in an energy-restricted diet on insulin resistance in overweight and obese European young adults. Diabetologia 51, 1261–1268.
16Reaven, P, Parthasarathy, S, Grasse, BJ, et al. (1991) Feasibility of using an oleate-rich diet to reduce the susceptibility of low-density lipoprotein to oxidative modification in humans. Am J Clin Nutr 54, 701–706.
17Abbey, M, Belling, GB, Noakes, M, et al. (1993) Oxidation of low-density lipoproteins: intraindividual variability and the effect of dietary linoleate supplementation. Am J Clin Nutr 57, 391–398.
18Fernandez-Banares, F, Esteve, M, Navarro, E, et al. (1996) Changes of the mucosal n-3 and n-6 fatty acid status occur early in the colorectal adenoma–carcinoma sequence. Gut 38, 254–259.
19Nkondjock, A, Shatenstein, B, Maisonneuve, P, et al. (2003) Assessment of risk associated with specific fatty acids and colorectal cancer among French-Canadians in Montreal: a case–control study. Int J Epidemiol 32, 200–209.
20Nkondjock, A, Krewski, D, Johnson, KC, et al. (2005) Specific fatty acid intake and the risk of pancreatic cancer in Canada. Br J Cancer 92, 971–977.
21Belluzzi, A, Brignola, C, Campieri, M, et al. (1996) Effect of an enteric-coated fish-oil preparation on relapses in Crohn's disease. N Engl J Med 334, 1557–1560.
22Innis, SM & Jacobson, K (2007) Dietary lipids in early development and intestinal inflammatory disease. Nutr Rev 65, S188–S193.
23Dominguez-Bello, MG, Blaser, MJ, Ley, RE, et al. (2011) Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140, 1713–1719.
24Biagi, E, Hylund, L, Candela, M, et al. (2010) Through ageing, and beyond gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5, e10667.
25Hill, JO, Melanson, EL & Wyatt, HT (2000) Dietary fat intake and regulation of energy balance: implications for obesity. J Nutr 130, 284S–288S.
26Portillo, MP, Tueros, AI, Perona, JS, et al. (1999) Modifications induced by dietary lipid source in adipose tissue phospholipid fatty acids and their consequences in lipid mobilization. Br J Nutr 82, 319–327.
27Kris-Etherton, PM, Harris, WS & Appel, LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106, 2747–2757.
28Gebauer, SK, Psota, TL, Harris, WS, et al. (2006) n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83, 1526S–1535S.
29Hammer, CT & Wills, ED (1978) The role of lipid components of the diet in the regulation of the fatty acid composition of the rat liver endoplasmic reticulum and lipid peroxidation. Biochem J 174, 585–593.
30Yuan, YV & Kitts, DD (2003) Dietary (n-3) fat and cholesterol alter tissue antioxidant enzymes and susceptibility to oxidation in SHR and WKY rats. J Nutr 133, 679–688.
31Ghosh, S, Dai, C, Brown, K, et al. (2011) Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol 301, G39–G49.
32Wagner, M, Amann, R, Lemmer, H, et al. (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59, 1520–1525.
33Meier, H, Amann, R, Ludwig, W, et al. (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C content. Syst Appl Microbiol 22, 186–196.
34Klaus, J, Spaniol, U, Adler, G, et al. (2009) Small intestinal bacterial overgrowth mimicking acute flare as a pitfall in patients with Crohn's disease. BMC Gastroenterol 9, 61.
35Murphy, EF, Cotter, PD, Healy, S, et al. (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635–1642.
37Goyens, PL, Spilker, ME, Zock, PL, et al. (2006) Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. Am J Clin Nutr 84, 44–53.
38Turnbaugh, PJ, Ley, RE, Mahowald, MA, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.
39Tursi, A, Brandimarte, G, Giorgetti, GM, et al. (2005) Assessment of small intestinal bacterial overgrowth in uncomplicated acute diverticulitis of the colon. World J Gastroenterol 11, 2773–2776.
40Pimentel, M, Chow, EJ & Lin, HC (2000) Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol 95, 3503–3506.
41Packey, CD & Sartor, RB (2009) Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr Opin Infect Dis 22, 292–301.
42Vijay-Kumar, M, Aitken, JD, Carvalho, FA, et al. (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231.
43Cani, PD, Delzenne, NM, Amar, J, et al. (2008) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol Biol (Paris) 56, 305–309.
44Turnbaugh, PJ, Backhed, F, Fulton, L, et al. (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223.
45Tilg, H, Moschen, AR & Kaser, A (2009) Obesity and the microbiota. Gastroenterology 136, 1476–1483.
46Atarashi, K, Tanoue, T, Shima, T, et al. (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341.
47Geuking, MB, Cahenzli, J, Lawson, MA, et al. (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806.
48Esterbauer, H, Schaur, RJ & Zollner, H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11, 81–128.