Skip to main content Accessibility help
×
Home

Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture

  • Yuguang Lin (a1), Roel J. Vonk (a1), Maarten J. H. Slooff (a2), Folkert Kuipers (a1) and Martin J. Smit (a1)...

Abstract

Propionate is a short-chain fatty acid formed in the colon and supposedly involved in the cholesterol-lowering effect of soluble fibre. To explore the underlying mechanism(s) of this fibre action, we have used human hepatocytes in primary culture to study the effects of propionate on hepatic lipid synthesis. Initial experiments with mevalonate and mevinolin, a competitive inhibitor of hydroxymethylglutaryl (HMG)-CoA reductase (EC 1·1·1·88) were performed to evaluate basic regulatory mechanisms in these cells; results were compared with those obtained with rat hepatocytes. Incubation for 24 h with mevalonate caused a similar, concentration-dependent inhibition of [14C]acetate incorporation. into cholesterol in human and rat hepatocytes. Likewise, mevinolin (100 μmol/l) inhibited the formation of cholesterol from radiolabelled acetate by about 80% in cells from both species. Propionate inhibited cholesterol as well as triacylglycerol synthesis from [14C]acetate with a similar concentration-dependency in rat hepatocytes. Fifty percent inhibition was obtained at a propionate concentration of only 0·1 mmol/l· This propionate-induced inhibition was not affected by a 100-fold excess of unlabelled acetate. Human hepatocytes were much less susceptible in this respect: propionate concentrations of 10–20 mmol/l were required to obtain similar inhibitory effects in these cells, i.e. values greatly exceeding reported portal propionate concentrations in humans. The results suggest the existence of differences in the regulation of hepatic cholesterol (and triacylglycerol) synthesis between human and rat liver cells. These results do not support the hypothesis that the fibre-induced decrease in plasma cholesterol concentration in man is mediated by a direct effect of propionate on hepatic cholesterol synthesis.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture
      Available formats
      ×

Copyright

References

Hide All
Anderson, J. W., Story, L., Sieling, B., Chen, W., Petro, M. S. & Story, J. (1984) Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. American Journal of Clinical Nutrition 40, 11461155.
Berry, M. N. & Friend, D. S. (1969) High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. Journal of Cell Biology 43, 506520.
Bligh, E. G. & Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Biophysiology 37, 911917.
Brass, E. P. & Ruff, L. J. (1992) Rat heptic coenzyme A is redistributed in response to mitochondrial acyl-coenzyme A accumulation. Journal of Nutrition 122, 20942100.
Chen, W. J. & Anderson, J. W. (1984) Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibres in cholesterol-fed rats. Proceedings of the Society for Experimental Biology and Medicine 175, 215218.
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & MacFarlane, G. T. (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.
Dankert, J., Zijlstra, J. B. & Wolthers, B. G. (1981) Volatile fatty acids in human peripheral and portal blood: quantitative determination by vacuum distillation and gas chromatography. Clinica Chimica Acta 110, 301307.
Davis, R. A., McNeal, M. M. & Moses, R. L. (1982) Intrahepatic assembly of very low density lipoprotein. Competition by cholesterol esters for the hydrophobic core. Journal of Biological Chemistry 257, 26342640.
De Water, R., Kamps, J. A. A., M., Van, Dijk, M. C. M., Hessels, E. M. A. J., Kuiper, J., Kruijt, J. K. & Van Berkel, T. J. C. (1992) Characterization of the low-density-lipoprotein-receptor-independent interaction of β-migrating very-low-density-lipoprotein with rat and human parenchymal liver cells in vitro. Biochemical Journal 282, 4148.
Dietschy, J. (1986) Regulation of cholesterol metabolism in man and in other species. Klinische Wochenschrift 62, 338345.
Drevon, C. A., Weinstein, D. B. & Steinberg, D. (1980) Regulation of cholesterol esterification and biosynthesis in monolayer cultures of normal adult rat hepatocytes. Journal of Biological Chemistry 225, 91289137.
Edge, S. B., Hoeg, J. M., Triche, T., Schneider, P. D. & Brewer, H. B. (1986) Cultured human hepatocytes. Evidence for metabolism of low density lipoproteins by a pathway independent of the classical low density lipoprotein receptor. Journal of Biological Chemistry 261, 38003806.
Forte, T. M., Nordhausen, R. W. & Princen, H. M. G. (1989) Structural properties of lipoproteins isolated from human primary hepatocyte cultures. Arteriosclerosis 9, 693 a.
Gamble, W., Vaughan, M., Kruth, M. S. & Avigan, J. (1978) Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. Journal of Lipid Research 19, 10681071.
Goldstein, J. L. & Brown, M. S. (1980) Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. Journal of Lipid Research 21, 505517.
Gordon, M. J. & Crabtree, G. (1992) The effects of propionate and butyrate on acetate metabolism in rat hepatocytes. International Journal of Biochemistry 24, 10291032.
Havekes, L. M., Verboom, H., De Wit, E., Yap, S. H. & Princen, H. M. G. (1986) Regulation of low density lipoprotein receptor activity in primary cultures of human hepatocytes by serum lipoproteins. Hepatology 6, 13561360.
Hoeg, J. M., Edge, S. B., Demosky, S. J., Starzl, T. E., Triche, T., Gregg, R. E. & Brewer, H. B. (1986) Metabolism of low-density lipoproteins by cultured hepatocytes from normal and homozygous familial hypercholesterolemic subjects. Biochimica et Biophysica Acta 876, 646657.
Illman, R. J., Topping, D. L., Mcintosh, G. H., Trimble, R. P., Storer, G. B., Taylor, M. N. & Cheng, B. Q. (1988) Hypocholesterolemic effects of dietary propionate; studies in whole animals and perfused rat liver. Annals of Nutrition and Metabolism 32, 97107.
Kalayoglu, M., Sollinger, H. W., Stratta, R. J., D'Allessandro, A. M., Hoffman, R. M., Pirsch, J. D. & Belzer, F. O. (1988) Extended preservation of the liver for clinical transplantation. Lancet i, 617619.
Kamps, J. A. A. M., Kruijt, J. K., Kuiper, J. & Van Berkel, T. J. C. (1991) Uptake and degradation of human low-density lipoprotein by human liver parenchymal and Kupffer cells in culture. Biochemical Journal 276, 135140.
Kirby, R. W., Anderson, J. W. & Sieling, B. (1981) Oat-bran selectively lowers serum low-density lipoprotein concentrations of hypercholesterolemic men. American Journal of Clinical Nutrition 34, 824829.
Kritchevsky, D. (1986) Dietary fiber and atherosclerosis. In Dietary Fiber, Basic and Clinical Aspects, pp. 265274, [Vahouny, G.V. and Kritchevsky, D., editors]. New York: Plenum Press.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1959) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.
Nakanishi, M., Goldstein, J. L. & Brown, M. S. (1988) Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. Journal of Biological Chemistry 263, 89298937.
Neese, R., Faix, D., Kletke, C, Wu, K., Wang, A. C, Shackleton, C. H. L. & Hellerstein, M. K. (1993) Measurements of endogenous synthesis of serum cholesterol in rats and humans using Mass Isotopomer Distribution Analysis (MIDA). American Journal of Physiology 264, E136E147.
Nishina, P. M. & Freedland, R. A. (1990) Effects of propionate on lipid biosynthesis in isolated rat hepatocytes. Journal of Nutrition 120, 668673.
Princen, H. M. G., Huijsmans, C. M. G., Kuipers, F., Vonk, R. J. & Kempen, H. J. M. (1986) Ketoconazole blocks bile acid synthesis in hepatocyte monolayer cultures and in vivo in rat by inhibiting cholesterol 7α-hydroxylase. Journal of Clinical Investigation 78, 10641071.
Salhanick, A. I., Schwartz, S. I. & Amatruda, J. M. (1991) Insulin inhibits apolipoprotein B secretion in isolated human hepatocytes. Metabolism 40, 275279.
Sandker, G. W., Weert, B., Olinga, P., Wolters, H., Slooff, M. J. H., Meijer, D. K. F. & Groothuis, G. M. M. (1994) Characterization of transport in isolated human hepatocytes. A study with the bile acid taurocholic acid, the uncharged ouabain and the organic cations vecuronium and rocuronium. Biochemical Pharmacology 40, 21932200.
Schouten, D., Kleinherenbrink-Stins, M. F., Brouwer, A., Knook, D. L., Kamps, J. A. A. M., Kuiper, J. & Van Berkel, T. J. C. (1990) Characterization in vitro of interaction of human apolipoprotein E-free high density lipoprotein with human hepatocytes. Arteriosclerosis 10, 11271135.
Smit, M. J., Beekhuis, H., Duursma, A. M., Bouma, J. M. W. & Gruber, M. (1988) Catabolism of circulating enzymes. Plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits. Clinical Chemistry 34, 24752480.
Todesco, T., Rao, A. V., Bosello, O. & Jenkins, D. J. A. (1991) Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. American Journal of Clinical Nutrition 54, 860865.
Turley, S. D., Andersen, J. M. & Dietschy, J. M. (1981) Rates of sterol synthesis and uptake in the major organs of the rat in vivo. Journal of Lipid Research 22, 551569.
Turley, S. D. & Dietschy, J. M. (1982) Cholesterol metabolism and excretion. In The Liver: Biology and Pathology, pp. 467492 [Arias, I., Popper, H., Schachter, D. and Shafritz, D. A., editors]. New York: Raven Press.
Wright, R. S., Anderson, J. W. & Bridges, S. R. (1990) Propionate inhibits hepatocyte lipid synthesis. Proceedings of the Society for Experimental Biology and Medicine 195, 2629.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed