Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-26T19:34:03.032Z Has data issue: false hasContentIssue false

Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoprotein concentrations and on lipoprotein oxidation susceptibility

Published online by Cambridge University Press:  09 March 2007

Nina S. Nielsen*
BioCentrum-DTU, Department of Biochemistry and Nutrition, The Technical University of Denmark, Søltofts Plads, Bygning 224, DK-2800 Kgs. Lyngby, Denmark
Anette Pedersen
Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Denmark
Brittmarie Sandström
Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Denmark
Peter Marckmann
Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Denmark
Carl-Erik Høy
BioCentrum-DTU, Department of Biochemistry and Nutrition, The Technical University of Denmark, Søltofts Plads, Bygning 224, DK-2800 Kgs. Lyngby, Denmark
*Corresponding author: Nina Skall Nielsen, fax +45 45 88 63 07, email
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Elevated concentrations of fasting and non-fasting triacylglycerol-rich lipoproteins (TRL) as well as oxidative changes of lipoproteins may increase the risk of ischaemic heart disease. To compare the effects of different diets rich in unsaturated fatty acids on the concentrations and in vitro oxidation of fasting and postprandial lipoproteins eighteen males consumed diets enriched with rapeseed oil (RO), olive oil (OO), or sunflower-seed oil (SO) in randomised order for periods of 3 weeks followed by a RO test meal. In the postprandial state the concentrations of cholesterol and triacylglycerol (TAG) in TRL were higher after consumption of OO compared with RO and SO (P<0·04), possibly related to differences in the fasting state. The propagation rates for VLDL and LDL oxidation were higher in the postprandial compared with the fasting state irrespective of diet. In the fasting state, the propagation rates were highest after SO (P<0·001), and in the postprandial state, SO gave rise to a shorter VLDL lag time (P=0·03) and a higher propagation rate than OO consumption (P=0·04). Overall, the SO diet resulted in a higher postprandial propagation rate of LDL (P<0·001) compared with RO and OO, while there was no effect of diet on LDL oxidation lag time. Our results suggest that RO and SO diets lower the postprandial cholesterol and TAG concentrations compared with OO, while RO and OO diets result in similar and lower in vitro susceptibility to oxidation of lipoproteins than SO.

Research Article
Copyright © The Nutrition Society 2002


Altman, DG (1995) Clinical trials. In Practical Statistics for Medical Research, pp. 440476. London: Chapman & Hall.Google Scholar
Asp, NG, Johanson, CG, Hallmer, H & Siljeström, M (1983) Rapid enzymatic assay of insoluble and soluble dietary fiber. Journal Agriculture and Food Chemistry 31, 476482.CrossRefGoogle ScholarPubMed
Austin, MA, King, M-C, Vranizan, KM & Krauss, RM (1990) Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82, 495506.CrossRefGoogle ScholarPubMed
Berry, EM, Eisenberg, S, Haratz, D, Friedlander, Y, Norman, Y, Kaufmann, NA & Stein, Y (1991) Effects of diets rich in monounsaturated fatty acids on plasma lipoproteins – the Jerusalem Nutrition Study: high MUFAs vs high PUFAs. American Journal of Clinical Nutrition 53, 899907.CrossRefGoogle Scholar
Bonanome, A, Pagnan, A, Biffanti, S, Opportuno, A, Sorgato, F, Dorella, M, Maiorino, M & Ursini, F (1992) Effect of dietary monounsaturated and polyunsaturated fatty acids on the susceptibility of plasma low density lipoproteins to oxidative modification. Arteriosclerosis and Thrombosis 12, 529533.CrossRefGoogle ScholarPubMed
Bowry, VW, Ingold, KU & Stocker, R (1992) Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochemical Journal 288, 341344.CrossRefGoogle ScholarPubMed
Carmena, R, Ascaso, JF, Camejo, G, Varela, G, Hurt-Camejo, E, Ordovas, JM, Maritnez-Valls, J, Bergström, M & Wallin, B (1996) Effect of olive and sunflower oils on low density lipoprotein level, composition, size, oxidation and interaction with arterial proteoglycans. Atherosclerosis 125, 243255.CrossRefGoogle ScholarPubMed
Christopherson, SW & Glass, RL (1969) Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. Journal of Dairy Science 52, 12891290.CrossRefGoogle Scholar
Chung, BH, Tallis, G, Yalamoori, V, Anantharamaiah, GM & Segrest, JP (1994) Liposome-like particles isolated from human atherosclerotic plaques are structurally and compositionally similar to surface remnants of triglyceride-rich lipoproteins. Arteriosclerosis and Thrombosis 14, 622635.CrossRefGoogle ScholarPubMed
Dieber-Rotheneder, M, Puhl, H, Waeg, G, Striegl, G & Esterbauer, H (1991) Effect of oral supplementation with D-α-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. Journal of Lipid Research 32, 13251332.CrossRefGoogle ScholarPubMed
Dole, VP & Hamlin, JT (1962) Particulate fat in lymph and blood. Physiological Reviews 42, 674701.CrossRefGoogle ScholarPubMed
Esterbauer, H, Gebicki, J, Puhl, H & Jürgens, G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine 13, 341390.CrossRefGoogle ScholarPubMed
Folch, J, Lees, M & Stanley, GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Grooth, PHE, van Stiphout, WAHJ, Krauss, XH, Jansen, H, Van Tol, A, Van Ramhorst, E, Chin-On, S, Hofman, A, Cresswell, SR & Havekes, L (1991) Postprandial lipoprotein metabolism in normolipidemic men with and without coronary heart disease. Arteriosclerosis and Thrombosis 11, 653662.CrossRefGoogle Scholar
Gunstone, FD (1984) Reaction of oxygen and unsaturated fatty acids. Journal of the American Oil Chemist Society 61, 441447.CrossRefGoogle Scholar
Gustafsson, I-B, Vessby, B, Öhrvall, M & Nydahl, M (1994) A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects. American Journal of Clinical Nutrition 59, 667674.CrossRefGoogle Scholar
Hau, M-F, Smelt, AHM, Bindels, AJGH, Sijbrands, EJG, Van der Laarse, A, Onkenhout, W, Van Duyvenvoorde, W & Princen, HMG (1996) Effects of fish oil on oxidation resistance of VLDL in hypertriglyceridemic patients. Arteriosclerosis, Thrombosis, and Vascular Biology 16, 11971202.CrossRefGoogle ScholarPubMed
International Consensus Statement on Olive Oil and the Mediterranean Diet: Implications for Health in Europe (1997) European Journal of Cancer Prevention 6, 438–421.CrossRefGoogle Scholar
Kaplan, LA, Miller, JA, Stein, EA & Stampfer, MJ (1990) Simultaneous, high-performance liquid chromatographic analysis of retinol, tocopherols, lycopene, and α- and β-carotene in serum and plasma. Methods in Enzymology 189, 155167.CrossRefGoogle ScholarPubMed
Karpe, F (1997) Postprandial lipid metabolism in relation to coronary heart disease. Proceedings of the Nutrition Society 56, 671678.CrossRefGoogle ScholarPubMed
Karpe, F, Steiner, G, Uffelman, K, Olivecrona, T & Hamsten, A (1994) Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 106, 8397.CrossRefGoogle ScholarPubMed
Keidar, S, Kaplan, M, Rosenblat, M, Brook, GJ & Aviram, M (1992) Apolipoprotein E and lipoprotein lipase reduce macrophage degradation of oxidized very-low-density lipoprotein (VLDL), but increases cellular degradation of native VLDL. Metabolism 41, 11851192.CrossRefGoogle ScholarPubMed
Kleinveld, HA, Naber, AHJ, Stalenhoef, AFH & Demacker, PNM (1993) Oxidation resistance, oxidation rate, and extent of oxidation of human low density lipoprotein depend on the ratio of oleic acid content to linoleic acid content: studies in vitamine E deficient subjects. Free Radical Biology and Medicine 15, 273280.CrossRefGoogle ScholarPubMed
Larsen, LF, Jespersen, J & Marckmann, P (1999) Are olive oil diets antithrombotic? Diets enriched with olive, rapeseed, or sunflower oil affect postprandial factor VII differently. American Journal of Clinical Nutrition 70, 976982.CrossRefGoogle ScholarPubMed
Lechleitner, M, Hoppichler, F, Föger, B & Patch, JR (1994) Low-density lipoproteins of the postprandial state induce cellular cholesteryl ester accumulation in macrophages. Arteriosclerosis and Thrombosis 14, 17991807.CrossRefGoogle ScholarPubMed
Lichtenstein, AH, Ausman, LM, Carrasco, W, Jenner, JL, Gualtieri, LJ, Goldin, BR & Schaefer, EJ (1993) Effects of canola, corn, and olive oils on fasting and postprandial plasma lipoproteins in humans as part of a national cholesterol education program step 2 diet. Arteriosclerosis and Thrombosis 13, 15331542.CrossRefGoogle ScholarPubMed
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
McDonald, BE, Gerrard, JM, Bruce, VM & Corner, EJ (1989) Comparison of the effect of canola oil and sunflower oil on plasma lipids and lipoproteins and on in vivo thromboxane A2 and prostacyclin production in healthy young men. American Journal of Clinical Nutrition 50, 13821388.CrossRefGoogle ScholarPubMed
Matthews, JN, Altman, DG, Campbell, MJ & Royston, P (1990) Analysis of serial measurements in medical research. British Medical Journal 300, 230235.CrossRefGoogle ScholarPubMed
Meydani, M, Cohn, JS, Macauley, JB, McNamara, JR, Blumberg, JB & Schaefer, EJ (1989) Postprandial changes in the plasma concentration of α- and gamma-tocopherol in human subjects fed a fat-rich meal supplemented with fat-soluble vitamins. Journal of Nutrition 119, 12521258.CrossRefGoogle ScholarPubMed
Nordestgaard, BG & Tybjaerg Hansen, A (1992) IDL, VLDL, chylomicrons and atherosclerosis. European Journal of Epidemiology 8, 9298.CrossRefGoogle ScholarPubMed
Nydahl, M, Gustafsson, I-B, Öhrvall, M & Vessby, B (1993) Similar serum lipoprotein cholesterol concentrations in healthy subjects on diets enriched with rapeseed and with sunflower oil. European Journal of Clinical Nutrition 48, 128137.Google Scholar
Nydahl, M, Gustafsson, I-B, Öhrvall M & Vessby, B (1995) Similar effects of rapeseed oil (canola oil) and olive oil in a lipid-lowering diet for patients with hyperlipoproteinemia. Journal of the American College of Nutrition 14, 643651.CrossRefGoogle Scholar
O'Meara, NM, Lewis, GF, Cabana, VG, Iverius, PH, Getz, GS & Polonsky, KS (1992) Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses. Journal of Clinical Endocrinological Metabolism 75, 465471.Google ScholarPubMed
Patsch, JR, Miesenböck, G, Hopferwieser, T, Mühlberger, V, Knapp, E, Dunn, JK, Gotto, AM Jr & Patsch, W (1992) Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis and Thrombosis 12, 13361345.CrossRefGoogle ScholarPubMed
Pedersen, A, Baumstark, MW, Marckmann, P, Gylling, H & Sandström, B-M (2000) An olive oil-rich diet results in higher concentrations of LDL cholesterol and a higher number of LDL subfraction particles than rapeseed oil and sunflower oil diets. Journal of Lipid Research 41, 19011911.CrossRefGoogle Scholar
Pedersen, A, Marckmann, P & Sandström, B-M (1999) Postprandial lipoprotein, glucose and insulin responses after two consecutive meals containing rapeseed oil, sunflower oil, or palm oil with or without glucose at the first meal. British Journal of Nutrition 82, 97104.CrossRefGoogle ScholarPubMed
Potts, JL, Humphreys, SM, Coppack, SW, Fisher, RM, Gibbons, GF & Frayn, KN (1994) Fasting plasma triacylglycerol concentrations predict adverse changes in lipoprotein metabolism after a normal meal. British Journal of Nutrition 72, 101109.CrossRefGoogle ScholarPubMed
Princen, HMG, van Duyvenvoorde, W, Buytenhek, R, Van der Laarse, A, van Poppel, G, Leuven, JAG & van Hinsberg, VWM (1995) Supplementation with low doses of vitamin E protects LDL from lipid peroxidation in men and women. Arteriosclerosis, Thrombosis, and Vascular Biology 15, 325333.CrossRefGoogle ScholarPubMed
Princen, HMG, van Poppel, G, Vogelezang, C, Buytenhek, R & Kok, FJ (1992) Supplementation with vitamin E but not β-carotene in vivo protects low density lipoprotein from lipid peroxidation in vitro. Effect of cigarette smoking. Arteriosclerosis and Thrombosis 12, 554562.CrossRefGoogle Scholar
Rapp, JH, Lespine, A, Hamilton, RL, Colyvas, N, Chaumeton, AH, Tweedie Hardman, J, Kotite, L, Kunitake, ST, Havel, RJ & Kane, JP (1994) Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arteriosclerosis and Thrombosis 14, 17671774.CrossRefGoogle ScholarPubMed
Reaven, PD, Grasse, BJ & Tribble, DL (1994) Effects of linoleate-enriched and oleate-enriched diets in combination with α-tocopherol on the susceptibility of LDL and LDL subfractions to oxidative modification in humans. Arteriosclerosis and Thrombosis 14, 557566.CrossRefGoogle ScholarPubMed
Reaven, PD, Khouw, A, Beltz, WF, Parthasarathy, S & Witztum, JL (1993 a) Effect of dietary antioxidant combinations in humans. Protection of LDL by vitamin E but not by β-carotene. Arteriosclerosis and Thrombosis 13, 590600.CrossRefGoogle Scholar
Reaven, PD, Parthasarathy, S, Grasse, BJ, Miller, E, Steinberg, D & Witztum, JL (1993) Effects of oleate-rich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. Journal of Clinical Investigations 91, 668676.CrossRefGoogle ScholarPubMed
Roche, HM, Zampelas, A, Knapper, JM, Webb, D, Brooks, C, Jackson, KG, Wright, JW, Gould, BJ, Kafatos, A, Gibney, MJ & Williams, CM (1998) Effect of long-term olive oil dietary intervention on postprandial triacylglycerol and factor VII metabolism. American Journal of Clinical Nutrition 68, 552560.CrossRefGoogle ScholarPubMed
Rumsey, SC, Galeano, NF, Arad, Y & Demacker, PNM (1992) Cryopreservation with sucrose maintains normal physical and biological properties of human plasma low density lipoproteins. Journal of Lipid Research 33, 15511561.CrossRefGoogle ScholarPubMed
Simpson, HS, Williamson, CM, Olivecrona, T, Pringle, S, Maclean, J, Lorimer, AR, Bonnefous, F, Bogaievsky, Y, Packard, CJ & Shepherd, J (1990) Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 85, 193202.CrossRefGoogle ScholarPubMed
Sorensen, NS, Marckmann, P, Høy, C-E, Duyvenvoorde, W & Princen, HMG (1998) Effect of fish-oil-enriched margarine on plasma lipids, low-density-lipoprotein particle composition, size, and susceptibility to oxidation. American Journal of Clinical Nutrition 68, 235241.CrossRefGoogle ScholarPubMed
Tinker, LF, Parks, EJ, Behr, SR, Schneeman, BO & Davis, PA (1999) (n-3) fatty acid supplementation in moderately hypertriglyceridemic adults changes postprandial lipid and apolipoprotein B responses to a standardized test meal. Journal of Nutrition 129, 11261134.CrossRefGoogle ScholarPubMed
Traber, MG & Kayden, HJ (1989) Preferetial incorporation of α-tocopherol vs gamma-tocopherol in human lipoproteins. American Journal of Clinical Nutrition 49, 517526.CrossRefGoogle ScholarPubMed
Tribble, DL, Thiel, PM, van den Berg, JJM & Krauss, RM (1995) Differing α-tocopherol oxidative lability and ascorbic acid sparing effects in buoyant and dense LDL. Arteriosclerosis, Thrombosis, and Vascular Biology 15, 20252031.CrossRefGoogle ScholarPubMed
Trichopoulou, A, Katsouyanni, K & Gnardellis, C (1993) The traditional Greek diet. European Journal of Clinical Nutrition 47, S76S81.Google ScholarPubMed
Turpeinen, AM, Alfthan, G, Valsta, L, Hietanen, E, Salonen, JT, Schunk, H, Nyyssönen, K & Mutanen, M (1995) Plasma and lipoprotein lipid peroxidation in humans on sunflower and rapeseed oil diets. Lipids 30, 485492.CrossRefGoogle ScholarPubMed
Uiterwaal, CS, Grobbee, DE, Witteman, JC, van Stiphout, WA, Krauss, XH, Havekes, LM, de Bruijn, AM, van Tol, A & Hofman, A (1994) Postprandial triglyceride response in young adult men and familial risk for coronary atherosclerosis [see comments]. Annual Internal Medicine 121, 576583.CrossRefGoogle ScholarPubMed
Weintraub, MS, Zechner, R, Brown, A, Eisenberg, S & Breslow, JL (1988) Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Journal of Clinical Investigations 82, 18841893.CrossRefGoogle ScholarPubMed
Whitmann, SC, Sawyez, CG, Miller, DB, Wolfe, BM & Huff, MW (1998) Oxidized type IV hypertriglyceridemic VLDL-remnants cause greater macrophage cholesteryl ester accumulation than oxidized LDL. Journal of Lipid Research 39, 10081020.CrossRefGoogle Scholar
Winklerhofer-Roob, BM, Ziouzenkova, O, Puhl, H, Ellenmunter, H, Greiner, P, Müller, G, van't Hof, MA, Esterbauer, H & Shmerling, DH (1995) Impaired resistance to oxidation of low density lipoprotein in cystic fibrosis: improvement during vitamine E supplementation. Free Radical Biology and Medicine 19, 725733.CrossRefGoogle Scholar
Zampelas, A, Roche, H, Knapper, JME, Jackson, KG, Tornaritis, M, Hatzis, C, Gibney, MJ, Kafatos, A, Gould, BJ, Wright, J & Williams, CM (1998) Differences in postprandial lipaemic response between Northern and Southern Europeans. Atherosclerosis 139, 8393.CrossRefGoogle ScholarPubMed
Zilversmit, DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed