Skip to main content Accessibility help
×
Home

Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch

  • Shusuke Toden (a1) (a2), Anthony R. Bird (a1), David L. Topping (a1) and Michael A. Conlon (a1)

Abstract

Feeding higher levels of dietary animal protein (as casein or red meat) increases colonic DNA damage and thins the colonic mucus barrier in rats. Feeding resistant starch (RS) reverses these changes and increases large bowel SCFA. The present study examined whether high dietary dairy (casein or whey) or plant (soya) proteins had similar adverse effects and whether dietary RS was protective. Adult male rats were fed diets containing 15 or 25 % casein, whey or soya protein with or without 48 % high amylose starch (as a source of RS) for 4 weeks. DNA damage was measured in isolated colonocytes using the comet assay. Higher dietary casein and soya (but not whey) increased colonocyte DNA damage. DNA damage was highest with soya when fed at 15 or 25 % protein without RS. Dietary RS attenuated protein-induced colonocyte DNA damage in all groups but it remained significantly higher in rats fed 25 % soya compared with those fed 15 % protein. Dietary protein level did not affect colonic mucus thickness overall but the barrier was thinner in rats fed high dietary casein. This effect was reversed by feeding RS. Caecal total SCFA and butyrate pools were higher in rats fed RS compared with digestible starch. Caecal and faecal SCFA were unrelated to genetic damage but correlated with mucus thickness. The present data confirm that higher dietary protein affected colonocyte DNA and colonic mucus thickness adversely but that proteins differ in their effects on these indices of colon health. The data show also that these changes were reversed by RS.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr M. A. Conlon, fax +61 8 8303 8899, email michael.conlon@csiro.au

References

Hide All
Anderson, D, Hambly, RJ, Yu, TW, Thomasoni, F & Shuker, DE (1999) The effect of potassium diazoacetate on human peripheral lymphocytes, human adenocarcinoma Colon caco-2 cells, and rat primary colon cells in the comet assay. Teratog Carcinog Mutagen 19, 137146.
Annison, G, Illman, RJ & Topping, DL (2003) Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 133, 35233528.
Asano, T & McLeod, RS (2002) Dietary fibre for the prevention of colorectal adenomas and carcinomas. The Cochrane Database of Systematic Reviews 2002 CD003430.
Badger, TM, Ronis, MJ, Simmen, RC & Simmen, FA (2005) Soy protein isolate and protection against cancer. J Am Coll Nutr 24, 146S149S.
Bauer-Marinovic, M, Florian, S, Muller-Schmehl, K, Glatt, H & Jacobasch, G (2006) Dietary resistant starch type 3 prevents tumor induction by 1,2-dimethylhydrazine and alters proliferation, apoptosis and dedifferentiation in rat colon. Carcinogenesis 27, 18491859.
Belobrajdic, DP, McIntosh, GH & Owens, JA (2003) Whey proteins protect more than red meat against azoxymethane induced ACF in Wistar rats. Cancer Lett 198, 43–51.
Bingham, SA, Day, NE, Luben, R, et al. (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361, 14961501.
Bird, AR, Flory, C, Davies, DA, Usher, S & Topping, DL (2004) A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J Nutr 134, 831–835.
Bounous, G (2000) Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res 20, 47854792.
Cassidy, A, Bingham, SA & Cummings, JH (1994) Starch intake and colorectal cancer risk: an international comparison. Br J Cancer 69, 937–942.
Chao, A, Thun, MJ, Connell, CJ, McCullough, ML, Jacobs, EJ, Flanders, WD, Rodriguez, C, Sinha, R & Calle, EE (2005) Meat consumption and risk of colorectal cancer. JAMA 293, 172–182.
Chen, R, Rabinovitch, PS, Crispin, DA, Emond, MJ, Bronner, MP & Brentnall, TA (2005) The initiation of colon cancer in a chronic inflammatory setting. Carcinogenesis 26, 15131519.
Clausen, MR & Mortensen, PB (1995) Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 37, 684–689.
Cross, AJ & Sinha, R (2004) Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen 44, 44–55.
Cummings, JH & Macfarlane, GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70, 443459.
Dwarakanath, AD, Campbell, BJ, Tsai, HH, Sunderland, D, Hart, CA & Rhodes, JM (1995) Faecal mucinase activity assessed in inflammatory bowel disease using 14C threonine labelled mucin substrate. Gut 37, 58–62.
Emenaker, NJ & Basson, MD (2001) Short chain fatty acids differentially modulate cellular phenotype and c-myc protein levels in primary human nonmalignant and malignant colonocytes. Dig Dis Sci 46, 96105.
Englyst, H, Wiggins, HS & Cummings, JH (1982) Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107, 307318.
Giovannucci, E & Willett, WC (1994) Dietary factors and risk of colon cancer. Ann Med 26, 443452.
Govers, MJ, Lapre, JA, De Vries, HT & Van der Meer, R (1993) Dietary soybean protein compared with casein damages colonic epithelium and stimulates colonic epithelial proliferation in rats. J Nutr 123, 17091713.
Hakkak, R, Korourian, S, Ronis, MJ, Johnston, JM & Badger, TM (2001 a) Dietary whey protein protects against azoxymethane-induced colon tumors in male rats. Cancer Epidemiol Biomarkers Prev 10, 555–558.
Hakkak, R, Korourian, S, Ronis, MJ, Johnston, JM & Badger, TM (2001 b) Soy protein isolate consumption protects against azoxymethane-induced colon tumors in male rats. Cancer Lett 166, 27–32.
Helma, C & Uhl, M (2000) A public domain image-analysis program for the single-cell gel-electrophoresis (comet) assay. Mutat Res 466, 9–15.
Jowett, SL, Seal, CJ, Pearce, MS, Phillips, E, Gregory, W, Barton, JR & Welfare, MR (2004) Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut 53, 14791484.
Kleessen, B, Stoof, G, Proll, J, Schmiedl, D, Noack, J & Blaut, M (1997) Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. J Anim Sci 75, 24532462.
Larsson, SC, Rafter, J, Holmberg, L, Bergkvist, L & Wolk, A (2005) Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int J Cancer 113, 829–834.
Le Leu, RK, Hu, Y & Young, GP (2002) Effects of resistant starch and nonstarch polysaccharides on colonic luminal environment and genotoxin-induced apoptosis in the rat. Carcinogenesis 23, 713–719.
Lee, SO, Simons, AL, Murphy, PA & Hendrich, S (2005) Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden syrian hamsters. Exp Biol Med (Maywood) 230, 472–478.
Lin, Y, Meijer, GW, Vermeer, MA & Trautwein, EA (2004) Soy protein enhances the cholesterol-lowering effect of plant sterol esters in cholesterol-fed hamsters. J Nutr 134, 143–148.
Lupton, JR (1995) Butyrate and colonic cytokinetics: differences between in vitro and in vivo studies. Eur J Cancer Prev 4, 373378.
McBurney, MI, Thompson, LU, Cuff, DJ & Jenkins, DJ (1988) Comparison of ileal effluents, dietary fibers, and whole foods in predicting the physiological importance of colonic fermentation. Am J Gastroenterol 83, 536540.
McIntosh, GH & Le Leu, RK (2001) The influence of dietary proteins on colon cancer risk. Nutr Res 21, 10531066.
McIntosh, GH, Regester, GO, Le Leu, RK, Royle, PJ & Smithers, GW (1995) Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in rats. J Nutr 125, 809–816.
Moreau, NM, Martin, LJ, Toquet, CS, Laboisse, CL, Nguyen, PG, Siliart, BS, Dumon, HJ & Champ, MM (2003) Restoration of the integrity of rat caeco-colonic mucosa by resistant starch, but not by fructo-oligosaccharides, in dextran sulfate sodium-induced experimental colitis. Br J Nutr 90, 75–85.
Morita, T, Kasaoka, S, Hase, K & Kiriyama, S (1999) Psyllium shifts the fermentation site of high-amylose cornstarch toward the distal colon and increases fecal butyrate concentration in rats. J Nutr 129, 20812087.
Morita, T, Kasaoka, S, Ohhashi, A, Ikai, M, Numasaki, Y & Kiriyama, S (1998) Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylose cornstarch. J Nutr 128, 1156–1164.
Morita, T, Tanabe, H, Takahashi, K & Sugiyama, K (2004) Ingestion of resistant starch protects endotoxin influx from the intestinal tract and reduces d-galactosamine-induced liver injury in rats. J Gastroenterol Hepatol 19, 303–313.
Muir, JG, Yeow, EG, Keogh, J, Pizzey, C, Bird, AR, Sharpe, K, O'Dea, K & Macrae, FA (2004) Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. Am J Clin Nutr 79, 10201028.
Narisawa, T, Magadia, NE, Weisbuger, JH & Wynder, EL (1974) Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N’-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst 53, 10931097.
National Health and Medical Research Council (2004) Australian code of practice for the care and use of animals for scientific purposes, 7th ed. (http://www.nhmc.gov.au/publications/synopses/ea16syn.htm).
Norat, T, Bingham, S, Ferrari, P, et al. (2005) Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst 97, 906–916.
Norat, T, Lukanova, A, Ferrari, P & Riboli, E (2002) Meat consumption and colorectal cancer risk: an estimate of attributable and preventable fractions. IARC Sci Publ 156, 223–225.
Patten, GS, Abeywardena, MY, McMurchie, EJ & Jahangiri, A (2002) Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J Nutr 132, 25062513.
Potter, JD, Slattery, ML, Bostick, RM & Gapstur, SM (1993) Colon cancer: a review of the epidemiology. Epidemiol Rev 15, 499–545.
Reddy, BS (2000) The Fourth DeWitt S. Goodman lecture. Novel approaches to the prevention of colon cancer by nutritional manipulation and chemoprevention. Cancer Epidemiol Biomarkers Prev 9, 239–247.
Rieger, MA, Parlesak, A, Pool-Zobel, BL, Rechkemmer, G & Bode, C (1999) A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of ‘faecal water’. Carcinogenesis 20, 23112316.
Ritzhaupt, A, Ellis, A, Hosie, KB & Shirazi-Beechey, SP (1998) The characterization of butyrate transport across pig and human colonic luminal membrane. J Physiol 507, (Pt3), 819–830.
Rowland, IR, Mallett, AK & Wise, A (1985) The effect of diet on the mammalian gut flora and its metabolic activities. Crit Rev Toxicol 16, 31–103.
Schwiertz, A, Lehmann, U, Jacobasch, G & Blaut, M (2002) Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine. J Appl Microbiol 93, 157162.
Shaoul, R, Okada, Y, Cutz, E & Marcon, MA (2004) Colonic expression of MUC2, MUC5AC, and TFF1 in inflammatory bowel disease in children. J Pediatr Gastroenterol Nutr 38, 488493.
Shimotoyodome, A, Meguro, S, Hase, T, Tokimitsu, I & Sakata, T (2000) Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 125, 525531.
Silvester, KR, Bingham, SA, Pollock, JR, Cummings, JH & O'Neill, IK (1997) Effect of meat and resistant starch on fecal excretion of apparent N-nitroso compounds and ammonia from the human large bowel. Nutr Cancer 29, 13–23.
Smith, EA & Macfarlane, GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81, 288302.
Spector, D, Anthony, M, Alexander, D & Arab, L (2003) Soy consumption and colorectal cancer. Nutr Cancer 47, 1–12.
Steinmetz, KA & Potter, JD (1996) Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96, 10271039.
Toden, S, Bird, AR, Topping, DL & Conlon, MA (2005) Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutr Cancer 51, 45–51.
Toden, S, Bird, AR, Topping, DL & Conlon, MA (2006) Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol Ther 5, 267272.
Topping, DL & Clifton, PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81, 10311064.
Topping, DL, Fukushima, M & Bird, AR (2003) Resistant starch as a prebiotic and synbiotic: state of the art. Proc Nutr Soc 62, 171–176.
Topping, DL, Gooden, JM, Brown, IL, Biebrick, DA, McGrath, L, Trimble, RP, Choct, M & Illman, RJ (1997) A high amylose (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs. J Nutr 127, 615622.
Tsuda, H, Sekine, K, Ushida, Y, Kuhara, T, Takasuka, N, Iigo, M, Han, BS & Moore, MA (2000) Milk and dairy products in cancer prevention: focus on bovine lactoferrin. Mutat Res 462, 227–233.
Wacker, M, Wanek, P, Eder, E, Hylla, S, Gostner, A & Scheppach, W (2002) Effect of enzyme-resistant starch on formation of 1,N(2)-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal and cell proliferation in the colonic mucosa of healthy volunteers. Cancer Epidemiol Biomarkers Prev 11, 915920.
Willemsen, LE, Koetsier, MA, van Deventer, SJ & van Tol, EA (2003) Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52, 14421447.
Williamson, SL, Kartheuser, A, Coaker, J, Kooshkghazi, MD, Fodde, R, Burn, J & Mathers, JC (1999) Intestinal tumorigenesis in the Apc1638N mouse treated with aspirin and resistant starch for up to 5 months. Carcinogenesis 20, 805–810.
Wu, AH, Yang, D & Pike, MC (2000) A meta-analysis of soyfoods and risk of stomach cancer: the problem of potential confounders. Cancer Epidemiol Biomarkers Prev 9, 10511058.
Xiao, R, Badger, TM & Simmen, FA (2005) Dietary exposure to soy or whey proteins alters colonic global gene expression profiles during rat colon tumorigenesis. Mol Cancer 4, 1.

Keywords

Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch

  • Shusuke Toden (a1) (a2), Anthony R. Bird (a1), David L. Topping (a1) and Michael A. Conlon (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed