Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T16:58:21.861Z Has data issue: false hasContentIssue false

Diurnal changes in large-bowel metabolism: short-chain fatty acids and transit time in rats fed on wheat bran

Published online by Cambridge University Press:  09 March 2007

J. C. Mathers
Affiliation:
Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NEI 7RU
J.-M. Fotso Tagny
Affiliation:
Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NEI 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To investigate diurnal changes in large-bowel metabolism rats were fed once daily on a cooked maize-based diet without or with 200 g wLeat bran/kg diet and containing Cr2O3 as an indigestible marker. After 17 d four rats on each diet were killed at 4, 10, 16 and 22 h postfeeding. Emptying of dry matter (DM) from the stomach occurred by an apparently zero-order process at about 0·5 g/h in both diet groups. Feeding wheat bran had little effect on caecal pH or total short-chain fatty acid (SCFA) concentration but was associated with a marked increase in molar proportion of butyrate and a fall in propionate. There were substantial changes in caecal total SCFA concentration and in the molar proportions of individual SCFA throughout the day but no evidence of an interaction between diet and time interval after feeding. Caecal transit time (TT) was significantly reduced by feeding wheat bran whilst colonic TT was unaffected. Although when averaged across both diets there were no significant time effects on caecal or colonic TT, there was a significant diet × time interaction for caecal TT. The extent of coprophagy was measured. The proportion of stomach DM derived from ingested faeces increased with time interval after feeding but it was always a minor contribution so that in these circumstances coprophagy is unlikely to result in significant bias in estimates of digesta flow-rates or TT.

Type
Diurnal effects on transit and fatty acids in the large bowel
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Cheng, B.-Q., Trimble, R. P., Illman, R. J., Stone, B. A. & Topping, D. L. (1987). Comparative effects of dietary wheat bran and its morphological components (aleurone and pericarp-seed coat) on volatile fatty acid concentrations in the rat. British Journal of Nutrition 57, 6986.CrossRefGoogle ScholarPubMed
Cherbut, C. H. & Ruckebusch, Y. (1985). The effect of indigestible particles on digesta transit time and colonic motility in dogs and pigs. British Journal of Nutrition 53, 549557.CrossRefGoogle ScholarPubMed
Cummings, J. H., Hill, M. J., Jenkins, D. J. A., Pearson, J. R. & Wiggins, H. S. (1976 a). Changes in fecal composition and colonic function due to cereal fibre. American Journal of Clinical Nutriiion 29, 14681473.CrossRefGoogle Scholar
Cummings, J. H., Jenkins, D. J. A. & Wiggins, H. S. (1976 b). Measurement of the mean transit time of dietary residue through the human gut. Gut 17, 210218.CrossRefGoogle ScholarPubMed
Eastwood, M. A., Kirkpatrick, J. R., Mitchell, W. D., Bone, A. & Hamilton, T. (1973). Effects of dietary supplements of wheat bran and cellulose on faeces and bowel function. British Medical Journal 4, 392394.CrossRefGoogle ScholarPubMed
Ehle, F. R., Jeraci, J. L., Robertson, J. B. & Van Soest, P. J. (1982). The influence of dietary fiber on digestibility, rate of passage and gastrointestinal fermentation in pigs. Journal of Animal Science 55, 10711081.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. American Journal of Clinical Nutrition 42, 778787.CrossRefGoogle ScholarPubMed
Englyst, H. N., Hay, S. & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiological Letters 45, 163171.CrossRefGoogle Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within the gastrointestinal tract of ruminants. In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Fajardo, G. & Hornicke, H. (1989). Problems in estimating the extent of coprophagy inthe rat. British Journal of Nutrition 62, 551561.CrossRefGoogle Scholar
Findlay, J. M., Mitchell, W. D., Eastwood, M. A., Anderson, A. J. B. & Smith, A. N. (1974). Intestinal streaming patterns in chollerrhoeic enteropathy and diverticular disease. Gut 15, 207212.CrossRefGoogle ScholarPubMed
Fleming, S. E., Fitch, M. D. & Chansler, M. W. (1989). High-fiber diets: influence on characteristics of cecal digesta including short-chain fatty acid concentrations and pH. American Journal of Clinical Nutrition 50, 9399.CrossRefGoogle ScholarPubMed
Gidenne, T. & Poncet, C. (1985). Digestion, chez le lapin en croissance, d'une ration à taux élevé de constituents pariétaux: étude méthodologique pour le calcul de digestibilité apparante, par segment digestif (Digestion of a high fibre diet in growing rabbits: methodological study for determining partial apparent digestibility). Annales de Zootechie 34, 429446.CrossRefGoogle Scholar
Goodlad, J. S. & Mathers, J. C. (1987). Digesta flow from the ileum and transit time through the caecum of rats given diets containing graded levels of peas. Proceedings of the Nutrition Society 46, 149A.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1988). Effects of food carbohydrates on large intestinal fermentation in vitro. Proceedings of the Nutrition Society. 47, 176A.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1990). Large bowel fermentation in rats given diets containing raw peas (Pisumsativum). British Journal of Nutrition 64, 569587.CrossRefGoogle Scholar
Holland, B., Welch, A. A., Unwin, I. D., Buss, D. H.Paul, A. A. & Southgate, D. A. T. (1991). McCance and Widdowson's The Composition of Foods, 5th ed. Cambridge: Royal Society of Chemistry.Google Scholar
Hörnicke, H. & Björnhag, G. (1980). Coprophagy and related strategies for digesta utilization. In Digestive Physiology and Metabolism in Ruminants, pp. 707730 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Kamath, P. S., Phillips, S. F. & Zinsmeister, A. R. (1988). Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology 95, 14961502.CrossRefGoogle ScholarPubMed
Kotb, A. R. & Luckey, T. D. (1972). Markers in nutrition. Nutrition Abstracts and Reviews 42, 813845.Google ScholarPubMed
Livesey, G. (1990). Energy values of unavailable carbohydrates and diets: an inquiry and analysis. American Journal of Clinical Nutrition 51, 617637.CrossRefGoogle ScholarPubMed
Luck, B. R. & Penner, M. H. (1991). Nominal response of passage rates to fiber particle size in rats. Journal of Nutrition 121, 19401947.CrossRefGoogle Scholar
McCance, R. A., Prior, K. M. & Widdowson, E. M. (1953). A radiological study of the rate of passage of brown and white bread through the digestive tract of man. British Journal of Nutrition 7, 98104.CrossRefGoogle Scholar
Macfarlane, G. T. (1991). Fermentation reactions in the large intestine. In Short Chain Fatty Acids: Metabolism and Clinical Importance, pp. 510 [Roche, A. F., editor]. Report of the Tenth Ross Research Conference on Medical Issues, Columbus, Ohio: Ross Laboratories.Google Scholar
Mathers, J. C. (1991). Digestion of non-starch polysaccharides by non-ruminant omnivores. Proceedings of the Nutrition Society 50, 161172.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Dawson, L. D. (1991). Large bowel fermentation in rats eating processed potatoes. British Journal of Nutrition 66, 313329.CrossRefGoogle ScholarPubMed
Mathers, J. C., Fernandez, F., Hill, M. J., McCarthy, P. T., Shearer, M. J. & Oxley, A. (1990). Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. British Journal of Nutrition 63, 639652.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Fotso Tagny, J.-M. (1989). Diurnal variation in large bowel metabolism in rats given diets with and without wheat bran. Proceedings of the Nutrition Society. 48, 52A.Google Scholar
Mathers, J. C., Kennard, J. & James, O. F. W. (1993). Gastrointestinal responses to oats consumption in young adult and elderly rats: digestion, large bowel fermentation and crypt cell proliferation rates. British Journal of Nutrition 70, 561584.CrossRefGoogle ScholarPubMed
Mortensen, P. B., Holtug, K. & Rasmussen, H. S. (1988). Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: implications for colonic fermentation of dietary fiber in humans. Journal of Nutrition 118, 321325.CrossRefGoogle Scholar
Müller-Lissner, S. A. (1988). Effect of wheat bran on weight of stool and gastrointestinal transit time: a meta analysis. British Medical Journal 296, 615617.CrossRefGoogle ScholarPubMed
Nyman, M., Asp, N.-G., Cummings, J. H. & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. British Journal of Nutrition 55, 487496.CrossRefGoogle Scholar
Payler, D. K., Pomare, E. W., Heaton, K. W. & Harvey, R. F. (1975). The effect of wheat bran on intestinal transit. Gut 16, 209213.CrossRefGoogle ScholarPubMed
Riottot, M., Sacquet, E. & Leprince, C. (1984). Effect of wheat bran upon gastrointestinal transit in germ-free and conventional rats. Digestion 29, 3741.CrossRefGoogle ScholarPubMed
Seal, C. J. & Mathers, J. C. (1989). Intestinal zinc transfer by everted gut sacs from rats given diets containing different amounts and types of dietary fibre. British Journal of Nutrition 62, 151163.CrossRefGoogle ScholarPubMed
Stephen, A. M., Wiggins, H. S. & Cummings, J. H. (1987). Effect of changing transit time on colonic microbial metabolism in man. Gut 28, 601609.CrossRefGoogle ScholarPubMed
Stephen, A. M., Wiggins, H. S., Englyst, H. N., Cole, T. L., Wayman, B. J. & Cummings, J. H. (1986). The effect of age, sex and level of intake of dietary fibre from wheat on large-bowel function in thirty healthy subjects. British Journal of Nutrition 56, 349361.CrossRefGoogle ScholarPubMed
Thompson, A. (1970). Rat metabolism cage. Journal of the Institute of Animal Technicians 21, 1221.Google Scholar
van Dokkum, W., Pikaar, N. A. & Thissen, J. T. N. M. (1983). Physiological effects of fibre-rich types of bread. 2. Dietary fibre from bread: digestibility by the intestinal microflora and water-holding capacity in the colon of human subjects. British Journal of Nutrition 50, 61–14.Google ScholarPubMed
Walter, D. J., Eastwood, M. A., Brydon, W. G. & Elton, R. A. (1986). An experimental design to study colonic fibre fermentation in the rat: the duration of feeding. British Journal of Nutrition 55, 465479.CrossRefGoogle ScholarPubMed
Walter, D. J., Eastwood, M. A., Brydon, W. G. & Elton, R. A. (1988). Fermentation of wheat bran and gum arabic in rats fed on an elemental diet. British Journal of Nutrition 60, 225232.CrossRefGoogle Scholar
Warner, A. C. I. (1981). Rate of passage of digesta through the gut of mammals and birds. Nutrition Abstracts and Reviews Series B 51, 789820.Google Scholar
Wisker, E. & Feldheim, W. (1992). Faecal bulking and energy value of dietary fibre. In Dietary Fibre – A Component of Food, pp. 233246 [Schweizer, T. F. and Edwards, C. A., editors]. London: Springer-Verlag.CrossRefGoogle Scholar