Skip to main content Accessibility help

Effects of carrot and tomato juice consumption on faecal markers relevant to colon carcinogenesis in humans

  • Kerstin Schnäbele (a1), Karlis Briviba (a2), Achim Bub (a2), Silvia Roser (a1), Beatrice L. Pool-Zobel (a3) and Gerhard Rechkemmer (a1)...


High intakes of carotenoid-rich fruits and vegetables are associated with a reduced risk of various cancers including colon cancer. A human intervention study with carrot and tomato juice should show whether a diet rich in carotenoids, especially high in β-carotene and lycopene, can modify luminal processes relevant to colon carcinogenesis. In a randomised cross-over trial, twenty-two healthy young men on a low-carotenoid diet consumed 330 ml tomato or carrot juice per d for 2 weeks. Intervention periods were preceded by 2-week depletion phases. At the end of each study period, faeces of twelve volunteers were collected for chemical analyses and use in cell-culture systems. Consumption of carrot juice led to a marked increase of β-carotene and α-carotene in faeces and faecal water, as did lycopene after consumption of tomato juice. In the succeeding depletion phases, carotenoid contents in faeces and faecal water returned to their initial values. Faecal water showed high dose-dependent cytotoxic and anti-proliferative effects on colon adenocarcinoma cells (HT29). These effects were not markedly changed by carrot and tomato juice consumption. Neither bile acid concentrations nor activities of the bacterial enzymes β-glucosidase and β-glucuronidase in faecal water changed after carrot and tomato juice consumption. Faecal water pH decreased only after carrot juice consumption. SCFA were probably not responsible for this effect, as SCFA concentrations and profiles did not change significantly. In summary, in the present study, 2-week interventions with carotenoid-rich juices led only to minor changes in investigated luminal biomarkers relevant to colon carcinogenesis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of carrot and tomato juice consumption on faecal markers relevant to colon carcinogenesis in humans
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of carrot and tomato juice consumption on faecal markers relevant to colon carcinogenesis in humans
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of carrot and tomato juice consumption on faecal markers relevant to colon carcinogenesis in humans
      Available formats


Corresponding author

*Corresponding author: Dr Kerstin Schnäbele, fax +49 8161 71 2102, email


Hide All
1Ilyas, M, Straub, J, Tomlinson, IP & Bodmer, WF (1999) Genetic pathways in colorectal and other cancers. Eur J Cancer 35, 335351.
2Potter, JD, Slattery, ML, Bostick, RM & Gapstur, SM (1993) Colon cancer: a review of the epidemiology. Epidemiol Rev 15, 499545.
3World Cancer Research Fund (1997) Food, Nutrition and the Prevention of Cancer: a Global Perspective. Washington, DC: World Cancer Research Fund and American Institute for Cancer Research.
4Riboli, E & Norat, T (2003) Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr 78, Suppl. 3, 559S569S.
5Krinsky, NI (1991) Effects of carotenoids in cellular and animal systems. Am J Clin Nutr 53, Suppl. 1, 238S246S.
6Alabaster, O, Tang, Z, Frost, A & Shivapurkar, N (1995) Effect of β-carotene and wheat bran fibre on colonic aberrant crypt and tumour formation in rats exposed to azoxymethane and high dietary fat. Carcinogenesis 16, 127132.
7Komaki, C, Okuno, M, Onogi, N, Moriwaki, H, Kawamori, T, Tanaka, T, Mori, H & Muto, Y (1996) Synergistic suppression of azoxymethane-induced foci of colonic aberrant crypts by the combination of β-carotene and perilla oil in rats. Carcinogenesis 17, 18971901.
8Iftikhar, S, Lietz, H, Mobarhan, S & Frommel, TO (1996) In vitro β-carotene toxicity for human colon cancer cells. Nutr Cancer 25, 221230.
9Onogi, N, Okuno, M, Matsushima-Nishiwaki, R, Fukutomi, Y, Moriwaki, H, Muto, Y & Kojima, S (1998) Antiproliferative effect of carotenoids on human colon cancer cells without conversion to retinoic acid. Nutr Cancer 32, 2024.
10Briviba, K, Schnäbele, K, Schwertle, E, Blockhaus, M & Rechkemmer, G (2001) β-Carotene inhibits growth of human colon carcinoma cells in vitro by induction of apoptosis. Biol Chem 382, 16631668.
11van Poppel, G & Goldbohm, RA (1995) Epidemiologic evidence for β-carotene and cancer prevention. Am J Clin Nutr 62, 1393S1402S.
12Greenberg, ER, Baron, JA, Tosteson, TD, Freeman, DH Jr, Beck, GJ, Bond, JH, Colacchio, TA, Coller, JA, Frankl, HD & Haile, RW (1994) A clinical trial of antioxidant vitamins to prevent colorectal adenoma. Polyp Prevention Study Group. N Engl J Med 331, 141147.
13The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and β carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330, 10291035.
14Albanes, D, Malila, N, Taylor, PR, et al. (2000) Effects of supplemental α-tocopherol and β-carotene on colorectal cancer: results from a controlled trial (Finland). Cancer Causes Control 11, 197205.
15Baron, JA, Cole, BF, Mott, L, Haile, R, Grau, M, Church, TR, Beck, GJ & Greenberg, ER (2003) Neoplastic and antineoplastic effects of β-carotene on colorectal adenoma recurrence: results of a randomized trial. J Natl Cancer Inst 95, 717722.
16Giovannucci, E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 91, 317331.
17Levy, J, Bosin, E, Feldman, B, Giat, Y, Miinster, A, Danilenko, M & Sharoni, Y (1995) Lycopene is a more potent inhibitor of human cancer cell proliferation than either α-carotene or β-carotene. Nutr Cancer 24, 257266.
18Prakash, P, Russell, RM & Krinsky, NI (2001) In vitro inhibition of proliferation of estrogen-dependent and estrogen-independent human breast cancer cells treated with carotenoids or retinoids. J Nutr 131, 15741580.
19Kotake-Nara, E, Kushiro, M, Zhang, H, Sugawara, T, Miyashita, K & Nagao, A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131, 33033306.
20De Kok, TM & van Maanen, JM (2000) Evaluation of fecal mutagenicity and colorectal cancer risk. Mutat Res 463, 53101.
21Lapre, JA & Van der Meer, R (1992) Diet-induced increase of colonic bile acids stimulates lytic activity of fecal water and proliferation of colonic cells. Carcinogenesis 13, 4144.
22Geltner-Allinger, UG, Johansson, GK, Gustafsson, JA & Rafter, JJ (1989) Shift from a mixed to a lactovegetarian diet: influence on acidic lipids in fecal water – a potential risk factor for colon cancer. Am J Clin Nutr 50, 992996.
23Govers, MJ, Termont, DS, Lapre, JA, Kleibeuker, JH, Vonk, RJ & Van der, MR (1996) Calcium in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits colonic cytotoxicity in humans. Cancer Res 56, 32703275.
24Glinghammar, B, Venturi, M, Rowland, IR & Rafter, JJ (1997) Shift from a dairy product-rich to a dairy product-free diet: influence on cytotoxicity and genotoxicity of fecal water-potential risk factors for colon cancer. Am J Clin Nutr 66, 12771282.
25Müller, H, Bub, A, Watzl, B & Rechkemmer, G (1999) Plasma concentrations of carotenoids in healthy volunteers after intervention with carotenoid-rich foods. Eur J Nutr 38, 3544.
26Güldutuna, S, You, T, Kurts, W & Leuschner, U (1993) High-performance liquid-chromatographic determination of free and conjugated bile-acids in serum, liver biopsies, bile, gastric-juice and faeces by fluorescence labeling. Clin Chim Acta 214, 195207.
27Hylla, S, Gostner, A, Dusel, G, Anger, H, Bartram, HP, Christl, SU, Kasper, H & Scheppach, W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 67, 136142.
28Franceschi, S, Parpinel, M, La Vecchia, C, Favero, A, Talamini, R & Negri, E (1998) Role of different types of vegetables and fruit in the prevention of cancer of the colon, rectum, and breast. Epidemiology 9, 338341.
29Ax, K, Schubert, H, Briviba, K, Rechkemmer, G & Tevini, M (2001) Oil-in-water emulsions as carriers of bioavailable carotenoids. In Proceedings of the International Congress of Particle Technology, Nürnberg, Germany (CD-ROM) PARTEC, 4–B–153.
30Faulks, RM & Southon, S (2005) Challenges to understanding and measuring carotenoid bioavailability. Biochim Biophys Acta 1740, 95100.
31Goni, I, Serrano, J & Saura-Calixto, F (2006) Bioaccessibility of β-carotene, lutein and lycopene from fruits and vegetables. J Agric Food Chem 54, 53825387.
32Haza, AI, Glinghammar, B, Grandien, A & Rafter, J (2000) Effect of colonic luminal components on induction of apoptosis in human colonic cell lines. Nutr Cancer 36, 7989.
33Glinghammar, B, Holmberg, K & Rafter, J (1999) Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis 20, 969976.
34Latta, RK, Fiander, H, Ross, NW, Simpson, C & Schneider, H (1993) Toxicity of bile acids to colon cancer cell lines. Cancer Lett 70, 167173.
35Walker, AR, Walker, BF & Walker, AJ (1986) Faecal pH, dietary fibre intake, and proneness to colon cancer in four South African populations. Br J Cancer 53, 489495.
36Wächtershäuser, A & Stein, J (2000) Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr 39, 164171.
37Huycke, MM & Gaskins, HR (2004) Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood) 229, 586597.
38Bartram, HP, Gostner, A, Kelber, E, Dusel, G, Weimer, A, Scheppach, W & Kasper, H (1996) Effects of fish oil on fecal bacterial enzymes and steroid excretion in healthy volunteers: implications for colon cancer prevention. Nutr Cancer 25, 7178.
39Karlsson, PC, Huss, U, Jenner, A, Halliwell, B, Bohlin, L & Rafter, JJ (2005) Human fecal water inhibits COX-2 in colonic HT-29 cells: role of phenolic compounds. J Nutr 135, 23432349.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed