Skip to main content
×
×
Home

Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men

  • Chantal Gosselin (a1) (a2) and François Haman (a1) (a2)
Abstract

The effects of epigallocatechin-3-gallate (EGCG) and caffeine on non-shivering thermogenesis (NST) during cold exposure is unknown. The purpose of the present study was to quantify the effects of co-ingesting EGCG and caffeine on the thermogenic responses of a 3 h cold exposure. A total of eight healthy males were exposed to mild cold, using a liquid-conditioned suit perfused with 15°C water, on two occasions and consumed a placebo or an extract of 1600 mg of EGCG and 600 mg of caffeine (Green tea). Thermic, metabolic and electromyographic measurements were monitored at baseline and during the cold exposure. Results showed that the AUC of shivering intensity over the cold exposure period was reduced by approximately 20 % in the Green tea (266 (sem 6) % maximal voluntary contraction (MVC) × min) compared with the Placebo (332 (sem 69) %MVC × min) (P= 0·01) treatments. In contrast, the total AUC for energy expenditure (EE) was approximately 10 % higher in the Green tea (23·5 (sem 1·4) kJ/kg × 180 min) compared with the Placebo (327 (sem 74) kJ/kg 180 min) (P= 0·007) treatments. The decrease in shivering activity combined with an increase in EE, following the ingestion of EGCG and caffeine during the cold exposure, indicates that NST pathways can be significantly stimulated in adult human subjects. The present study provides an experimental approach for human investigations into the potential role of diet and bioactive food ingredients in modulating NST during cold exposure. Stimulating NST pathways in such a manner may also provide important targets in the search of targets for the management of obesity and diabetes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: F. Haman, fax +1 613 562 5149, email fhaman@uottawa.ca
References
Hide All
1Yoneshiro, T, Aita, S, Kawai, Y, et al. (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 95, 845850.
2Morrison, SF & Nakamura, K (2011) Central neural pathways for thermoregulation. Front Biosci 16, 74104.
3van Marken Lichtenbelt, WD, Vanhommerig, JW, Smulders, NM, et al. (2009) Cold-activated brown adipose tissue in healthy men. New Engl J Med 360, 15001508.
4Virtanen, KA, Lidell, ME, Orava, J, et al. (2009) Functional brown adipose tissue in healthy adults. New Engl J Med 360, 15181525.
5Cypess, AM, Lehman, S, Williams, G, et al. (2009) Identification and importance of brown adipose tissue in adult humans. New Engl J Med 360, 15091517.
6Ouellet, V, Labbe, SM, Blondin, DP, et al. (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122, 545552.
7Berube-Parent, S, Pelletier, C, Dore, J, et al. (2005) Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Brit J Nutr 94, 432436.
8Dulloo, AG, Duret, C, Rohrer, D, et al. (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70, 10401045.
9Rudelle, S, Ferruzzi, MG, Cristiani, I, et al. (2007) Effect of a thermogenic beverage on 24-hour energy metabolism in humans. Obesity (Silver Spring) 15, 349355.
10MacNaughton, KW, Sathasivam, P, Vallerand, AL, et al. (1990) Influence of caffeine on metabolic responses of men at rest in 28 and 5 degrees C. J Appl Physiol 68, 18891895.
11Haman, F, Legault, SR, Rakobowchuk, M, et al. (2004) Effects of carbohydrate availability on sustained shivering II. Relating muscle recruitment to fuel selection. J Appl Physiol 96, 4149.
12Bell, DG, Tikuisis, P & Jacobs, I (1992) Relative intensity of muscular contraction during shivering. J Appl Physiol 72, 23362342.
13Blondin, DP, Depault, I, Imbeault, P, et al. (2010) Effects of two glucose ingestion rates on substrate utilization during moderate-intensity shivering. Eur J Appl Physiol 108, 289300.
14Haman, F, Peronnet, F, Kenny, GP, et al. (2004) Effects of carbohydrate availability on sustained shivering I. Oxidation of plasma glucose, muscle glycogen, and proteins. J Appl Physiol 96, 3240.
15Haman, F, Péronnet, F, Kenny, GP, et al. (2002) Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids. J Appl Physiol 93, 7784.
16Haman, F, Peronnet, F, Kenny, GP, et al. (2005) Partitioning oxidative fuels during cold exposure in humans: muscle glycogen becomes dominant as shivering intensifies. J Physiol 566, 247256.
17Blondin, DP, Maneshi, A, Imbeault, MA, et al. (2011) Effects of the menstrual cycle on muscle recruitment and oxidative fuel selection during cold exposure. J Appl Physiol 111, 10141020.
18Blondin, DP, Peronnet, F & Haman, F (2010) Effects of ingesting [13C]glucose early or late into cold exposure on substrate utilization. J Appl Physiol 109, 654662.
19Blondin, DP, Peronnet, F & Haman, F (2012) Coingesting glucose and fructose in the cold potentiates exogenous CHO oxidation. Med Sci Sports Exer 44, 17061714.
20Hardy, JD & Dubois, EF (1938) The technic of measuring radiation and convection. J Nutr 15, 461475.
21Blondin, DP, Depault, I, Imbeault, P, et al. (2010) Effects of two glucose ingestion rates on substrate utilization during moderate-intensity shivering. Eur J Appl Physiol 108, 289300.
22Haman, F, Legault, SR & Weber, JM (2004) Fuel selection during intense shivering in humans: EMG pattern reflects carbohydrate oxidation. J Physiol 556, 305313.
23Elia, M (1991) Energy equivalents of CO2 and their importance in assessing energy expenditure when using tracer techniques. Am J Physiol Endocrinol Metab 260, E75E88.
24Péronnet, F & Massicotte, D (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16, 2329.
25Haman, F (2006) Shivering in the cold: from mechanisms of fuel selection to survival. J Appl Physiol 100, 17021708.
26Jansky, L (1973) Non-shivering thermogenesis and its thermoregulatory significance. Biol Rev Camb Philos Soc 48, 85132.
27Cannon, B & Nedergaard, J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214, 242253.
28Borchardt, RT & Huber, JA (1975) Catechol O-methyltransferase. 5. Structure–activity relationships for inhibition by flavonoids. J Med Chem 18, 120122.
29Dulloo, AG, Seydoux, J & Girardier, L (1992) Potentiation of the thermogenic antiobesity effects of ephedrine by dietary methylxanthines: adenosine antagonism or phosphodiesterase inhibition? Metab Clin Experimen 41, 12331241.
30Dulloo, AG, Seydoux, J, Girardier, L, et al. (2000) Green tea and thermogenesis: interactions between catechin–polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24, 252258.
31Gregersen, NT, Bitz, C, Krog-Mikkelsen, I, et al. (2009) Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions. Brit J Nutr 102, 11871194.
32Bartness, TJ, Vaughan, CH & Song, CK (2010) Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 34, Suppl. 1, S36S42.
33Bartness, TJ, Kay Song, C, Shi, H, et al. (2005) Brain–adipose tissue cross talk. Proc Nutr Soc 64, 5364.
34van Marken Lichtenbelt, WD & Daanen, HA (2003) Cold-induced metabolism. Curr Opin Clin Nutr Metab Care 6, 469475.
35Block, BA (1994) Thermogenesis in muscle. Annu Rev Physiol 56, 535577.
36Rolfe, DF & Brown, GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77, 731758.
37Astrup, A, Bulow, J, Madsen, J, et al. (1985) Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol 248, E507E515.
38Dulloo, AG & Miller, DS (1984) Thermogenic drugs for the treatment of obesity: sympathetic stimulants in animal models. Brit J Nutr 52, 179196.
39Vallerand, AL, Jacobs, I & Kavanagh, MF (1989) Mechanism of enhanced cold tolerance by an ephedrine–caffeine mixture in humans. J Appl Physiol 67, 438444.
40Hetzler, RK, Knowlton, RG, Somani, SM, et al. (1990) Effect of paraxanthine on FFA mobilization after intravenous caffeine administration in humans. J Appl Physiol 68, 4447.
41Acheson, KJ, Gremaud, G, Meirim, I, et al. (2004) Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr 79, 4046.
42Vallerand, AL, Zamecnik, J, Jones, PJ, et al. (1999) Cold stress increases lipolysis, FFA Ra and TG/FFA cycling in humans. Aviat Space Environ Med 70, 4250.
43Garofalo, MA, Kettelhut, IC, Roselino, JE, et al. (1996) Effect of acute cold exposure on norepinephrine turnover rates in rat white adipose tissue. J Auton Nerv Syst 60, 206208.
44Kim, J, Saidel, GM & Kalhan, SC (2008) A computational model of adipose tissue metabolism: evidence for intracellular compartmentation and differential activation of lipases. J Theor Biol 251, 523540.
0Brozek, J, Grande, F & Anderson, JT, et al. (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 110, 113140.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed