Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T07:40:58.473Z Has data issue: false hasContentIssue false

Early life undernutrition in rats

1. Quantitative histology of skeletal muscles from underfed young and refed adult animals

Published online by Cambridge University Press:  04 June 2009

K. S. Bedi
Affiliation:
Department of Child Health, Manchester University, Manchester M13 9PT
A. R. Birzgalis
Affiliation:
Department of Anatomy, Manchester University, Manchester M13 9PT
M. Mahon
Affiliation:
Department of Anatomy, Manchester University, Manchester M13 9PT
J. L. Smart
Affiliation:
Department of Child Health, Manchester University, Manchester M13 9PT
A. C. Wareham
Affiliation:
Department of Physiology, Manchester University, Manchester M13 9PT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Male rats were undernourished either during the geslational and suckling periods or for a period of time immediately following weaning. Some rats were killed at the end of the period of undernutrition; others were nutritionally rehabilitated for lengthy periods of time before examination. Two muscles, the extensor digitorum longus (EDL) and soleus (SOL) were studied from each rat. Histochemically-stained transverse sections of these muscles were used to determine total number of fibres, the fibre cross-sectional areas and the relative frequency of the various fibre types.

2. All rats killed immediately following undernutrition showed significant deficit sin body-weight, muscle weight and fibre cross-sectional area compared to age-matched controls.

3. Animals undernourished during gestation and suckling and then fed normally for 5 months showed persistent and significant deficits in body-weight, muscle weight and total fibre number. There were also significant deficits in mean fibre cross-sectional area of each fibre type except for red fibres in the EDL. No difference in the volume proportion of connective tissue was found.

4. Rats undernourished after weaning and then fed ad lib. for approximately 7 months had normal body-and muscle weights. Their muscles showed no significant differences in total fibre number, relative frequency of the various fibre types, fibre size or volume proportion of connective lissue.

5. These results indicate that, although the effects on rat skeletal muscle of a period of undernutrition after weaning can be rectified, undernutrition before weaning causes lasting deficits.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Bedi, K. S., Hall, R., Davies, C. A. & Dobbing, J. (1980). J. Comp. Neurol. 193, 863.CrossRefGoogle Scholar
Bedi, K. S., Mahon, M. & Smart, J. L. (1978). J. Nutr. 37, 59A.Google Scholar
Bedi, K. S., Thomas, Y. M., Davies, C. A. & Dobbing, J. (1980). J. Comp. Neurol. 193, 49.CrossRefGoogle Scholar
Birzgalis, A. R., Bedi, K. S., Mahon, M. & Smart, J. L. (1980). J. Anat. 130, 651.Google Scholar
Brooke, M. H. & Kaiser, K. K. (1970). Arch. Neurol. 23, 369.CrossRefGoogle Scholar
Chase, H. P., Lindsley, W. F. B. & O'Brien, D. (1969). Nature, Lond. 221, 554.CrossRefGoogle Scholar
Close, R. I. (1972). Physiol. Rev. 52, 129.CrossRefGoogle Scholar
Culley, W. J. & Lineberger, R. O. (1968). J. Nutr. 96, 375.CrossRefGoogle Scholar
Dickerson, J. W., Hughes, P. C. R. & McAnulty, P. A. (1972). Br. J. Nutr. 27, 527.CrossRefGoogle Scholar
Dobbing, J. (1974). In Scientific Foundations of Paediatrics, p. 565 [Davis, J. A. and Dobbing, J., editors]. Philadelphia: Heinemann, London.Google Scholar
Dobbing, J. (1976). In The Biology of Human Fetal Growth, p. 137 [Roberts, D. F. and Thompson, A. M., editors]. London: Taylor & Francis.Google Scholar
Dobbing, J. & Sands, J. (1971). Biol. Neonat. 19, 363.CrossRefGoogle Scholar
Frayn, K. N. & Maycock, P. F. (1979). Biochem. J. 184, 323.CrossRefGoogle Scholar
Goldspink, G. (1973). In The Structure and Function of Muscle 1, p. 179 [Bourne, G. H., editor]. New York: Academic Press.Google Scholar
Goldspink, G. & Ward, P. S. (1979). J. Physiol., Lond. 296, 453.CrossRefGoogle Scholar
Guth, L. & Samaha, F. J. (1969). Exp. Neurol. 25, 138.CrossRefGoogle Scholar
Guth, L. & Samaha, F. J. (1970). Exp. Neurol. 28, 365.CrossRefGoogle Scholar
Haltia, M., Berlin, Ö., Schucht, H. & Sourander, P. (1978). J. Neur. Sci. 36, 25.CrossRefGoogle Scholar
Hansen-Smith, F. M., Picou, D. & Golden, M. H. (1979). Br. J. Nutr. 41, 275.CrossRefGoogle Scholar
Hansen-Smith, F. M., van Horn, D. L. & Maksud, M. G. (1978). J. Nutr. 108, 248.CrossRefGoogle Scholar
Hegarty, P. V. J. & Kim, K. O. (1980). Br. J. Nutr. 44, 123.CrossRefGoogle Scholar
Howells, K. F., Hulme, J. M. L. & Jordan, T. C. (1979). Res. Exp. Med. 176, 137.CrossRefGoogle Scholar
Howells, K. F. & Jordan, T. C. (1978). Histochemistry 58, 97.CrossRefGoogle Scholar
Howells, K. F., Mathews, D. R. & Jordan, T. C. (1978). Res. Exp. Med. 173, 35.CrossRefGoogle Scholar
Jordan, T. C., Howells, K. F. & Piggot, S. M. (1979). Behav. Neural Biol. 25, 126.CrossRefGoogle Scholar
Lammi-Keefe, C. J., Hegarty, P. V. J. & Swan, P. B. (1981). Experientia 37, 25.CrossRefGoogle Scholar
Montgomery, R. D. (1962). J. clin. Path. 15, 511.CrossRefGoogle Scholar
Nachlas, M. M., Tyson, K., De Souza, E., Cheng, C. & Seligman, A. M. (1955). J. Histochem. Cytochem. 5, 420.CrossRefGoogle Scholar
Padykula, H. A. & Herman, E. (1955). J. Histochem. Cytochem. 3, 170.CrossRefGoogle Scholar
Patterson, S. & Goldspink, G. (1973). Z. Zellforsch. 146, 375.CrossRefGoogle Scholar
Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A. & Stempel, K. E. (1972). Biochemistry 11, 2627.CrossRefGoogle Scholar
Pullen, A. H. (1977 a). J. Anat. 123, 1.Google Scholar
Pullen, A. H. (1977 b). J. Anat. 123, 467.Google Scholar
Rowe, R. W. D. (1968). J. exp. Zool. 167, 353.CrossRefGoogle Scholar
Smart, J. L. (1979). In Chemical Influences on Behaviour, p. 1 [Brown, K. and Cooper, S. J., editors]. New York: Academic Press.Google Scholar
Smart, J. L. & Bedi, K. S. (1982). Br. J. Nutr. 47, 439.CrossRefGoogle Scholar
Soukup, T., Wydra, J. & Cerny, M. (1979). Histochemistry 60, 71.CrossRefGoogle Scholar
Stein, J. M. & Padykula, H. A. (1962). Am. J. Anat. 110, 103.CrossRefGoogle Scholar
Stickland, N. C., Widdowson, E. M. & Goldspink, G. (1975). Br. J. Nutr. 34, 421.CrossRefGoogle Scholar
Takeuchi, T. & Kuriaki, H. (1955). J. Histochem. Cytochem. 3, 153.CrossRefGoogle Scholar
Thomas, Y. M., Bedi, K. S., Davies, C. A. & Dobbing, J. (1979). Early Hum. Develop. 3, 109.CrossRefGoogle Scholar
Trenkle, A. (1974). J. Anim. Sci. 38, 1142.CrossRefGoogle Scholar
Wareham, A. C., Mahon, M., Bedi, K. S. & Smart, J. L. (1982). Br. J. Nutr. 47, 433.CrossRefGoogle Scholar
Weibel, E. R. (1969). Int. Rev. Cytol. 26, 235.CrossRefGoogle Scholar
Widdowson, E. M. (1970). In The Physiology and Biochemistry of Muscle as a Food, p. 511 [Briskey, E. J., Cassens, R. G. and Marsh, B. B., editors]. Madison, Wisconsin: University of Wisconsin Press.Google Scholar
Widdowson, E. M., Dickerson, J. W. T. & McCance, R. A. (1960). Br. J. Nutr. 14, 457.CrossRefGoogle Scholar
Williams, J. P. G. & Hughes, P. C. R. (1978). Acta Anat. 101, 249.CrossRefGoogle Scholar
Winick, M. & Noble, A. (1966). J. Nutr. 89, 300.CrossRefGoogle Scholar