Skip to main content Accessibility help
×
Home

Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets

  • Sugiharto Sugiharto (a1) (a2), Ann-Sofie Riis Poulsen (a1), Nuria Canibe (a1) and Charlotte Lauridsen (a1)

Abstract

The present study investigated the effect of feeding bovine colostrum (BC) to piglets in comparison with feeding a milk replacer (MR) and conventional rearing by the sow on the intestinal immune system and number of enterotoxigenic Escherichia coli (ETEC) colonising the intestinal tissue. Piglets (23-d-old) were allocated to one of the following four groups: (1) killed at the beginning of the experiment (Base); (2) separated from the sow and fed BC (BC-fed); (3) separated from the sow and fed a MR (MR-fed); (4) kept with the sow (Sow-Milk). Blood was sampled on days 1 and 8, and faecal samples were collected on days 1, 3, 5 and 8. On day 8, piglets were killed and gastrointestinal digesta and intestinal segments were collected. The frequency of diarrhoea was found to be higher (P≤ 0·019) in MR-fed piglets than in BC-fed and Sow-Milk piglets. Piglets from the MR-fed group had the lowest lactic acid bacteria:haemolytic E. coli ratio (P treat= 0·064) in the faeces. The number of E. coli colonising the intestinal tissue was higher (P< 0·001) in piglets from the MR-fed group than in those from the BC-fed and Sow-Milk groups. Piglets from the Sow-Milk group had a higher (P= 0·020) mucosal IgG concentration than those from the MR-fed group, but did not exhibit any difference when compared with piglets from the Base and BC-fed groups. Piglets from the BC-fed group exhibited a reduced (P≤ 0·037) expression level of Toll-like receptor-4 in the intestinal mucosa when compared with those from the MR-fed and Sow-Milk groups. The expression level of IL-2 was higher (P≤ 0·051) in piglets from the MR-fed group than in those from the other treatment groups. In conclusion, feeding BC rather than MR to the piglets reduced the colonisation of intestine by ETEC and modulated the intestinal immune system, whereas no differences were observed in piglets fed BC and conventionally reared by the sows.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: C. Lauridsen, fax +45 87154249, email charlotte.lauridsen@anis.au.dk

References

Hide All
1 Rutherford, KMD, Baxter, EM, D'Eath, RB, et al. (2013) The welfare implications of large litter size in the domestic pig I: biological factors. Anim Welfare 22, 199218.
2 Wolf, J, Žáková, E & Groeneveld, E (2008) Within-litter variation of birth weight in hyperprolific Czech Large White sows and its relation to litter size traits, stillborn piglets and losses until weaning. Livest Sci 115, 195205.
3 De Vos, M, Huygelen, V, Willemen, S, et al. (2014) Artificial rearing of piglets: effects on small intestinal morphology and digestion capacity. Livest Sci 159, 165173.
4 Boudry, C, Dehoux, J-P, Portetelle, D, et al. (2008) Bovine colostrum as a natural growth promoter for newly weaned piglets: a review. Biotechnol Agron Soc Environ 12, 157170.
5 Nguyen, TV, Yuan, L, Azevedo, MS, et al. (2007) Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity. Vet Immunol Immunopathol 117, 236248.
6 Zimmerman, JJ, Karriker, LA, Ramirez, A, et al. (2012) Diseases of Swine, 10th ed. West Sussex: Blackwell Publishing.
7 Pluske, JR, Dividich, JL & Verstegen, MWA (2003) Weaning the Pig: Concepts and Consequences. Wageningen: Wageningen Academic Publishers.
8 Roese, G & Taylor, G (2006) Basic pig husbandry – the litter. Primefact 71. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/56142/Basic_pig_husbandry-The_litter_-_Primefact_71-final.pdf (accessed accessed June 2014).
9 Cabrera, RA, Boyd, RD, Jungst, SB, et al. (2010) Impact of lactation length and piglet weaning weight on long-term growth and viability of progeny. J Anim Sci 88, 22652276.
10 Heo, JM, Opapeju, FO, Pluske, JR, et al. (2013) Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr 97, 207237.
11 Miller, YJ, Collins, AM, Smits, RJ, et al. (2012) Providing supplemental milk to piglets preweaning improves the growth but not survival of gilt progeny compared with sow progeny. J Anim Sci 90, 50785085.
12 Boudry, C, Buldgen, A, Portetelle, D, et al. (2007) Effects of oral supplementation with bovine colostrum on the immune system of weaned piglets. Res Vet Sci 83, 91101.
13 Hurley, WL & Theil, PK (2011) Perspectives on immunoglobulins in colostrum and milk. Nutrients 3, 442474.
14 Carstensen, L, Ersbøll, AK, Jensen, KH, et al. (2005) Escherichia coli post-weaning diarrhoea occurrence in piglets with monitored exposure to creep feed. Vet Microbiol 110, 113123.
15 Frydendahl, K, Jensen, TK, Andersen, JS, et al. (2003) Association between the porcine F18 receptor genotype and phenotype and susceptibility to colonisation and postweaning diarrhoea caused by O138:F18. Vet Microbiol 93, 3951.
16 Naughton, PJ, Mikkelsen, LL & Jensen, BB (2001) Effects of nondigestible oligosaccharides on Salmonella enterica serovar Typhimurium and nonpathogenic Escherichia coli in the pig small intestine in vitro . Appl Environ Microbiol 67, 33913395.
17 Sugiharto, S, Jensen, BB & Lauridsen, C (2012) Development of an ex vivo model for investigating the bacterial association to the gut epithelium of pigs. J Anim Sci 90, Suppl. 4, 397399.
18 Holdeman, LV, Cato, EP & Moore, EC (1977) Anaerobe Laboratory Manual, 4th ed. Blacksburg, VA: Virginia Polytechnic Institute and State University.
19 Coddens, A, Verdonck, F, Tiels, P, et al. (2007) The age-dependent expression of the F18+ E. coli receptor on porcine gut epithelial cells is positively correlated with the presence of histo-blood group antigens. Vet Microbiol 122, 332341.
20 Boudry, C, Dehoux, J-P, Wavreille, J, et al. (2008) Effect of a bovine colostrum whey supplementation on growth performance, faecal Escherichia coli population and systemic immune response of piglets at weaning. Animal 2, 730737.
21 Li, P, Yin, Y-L, Li, D, et al. (2007) Amino acids and immune function. Br J Nutr 98, 237252.
22 Huguet, A, Le Dividich, J & Le Huërou-Luron, I (2012) Improvement of growth performance and sanitary status of weaned piglets fed a bovine colostrum-supplemented diet. J Anim Sci 90, 15131520.
23 Kiarie, E, Bhandari, S, Scott, M, et al. (2011) Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli (K88). J Anim Sci 89, 10621078.
24 Jensen, KH, Damgaard, BM, Andresen, LO, et al. (2013) Prevention of post weaning diarrhoea by a Saccharomyces cerevisiae-derived product based on whole yeast. Anim Feed Sci Technol 183, 2939.
25 Palmeira, P, Carbonare, SB, Silva, MLM, et al. (2001) Inhibition of enteropathogenic Escherichia coli (EPEC) adherence to HEp-2 cells by bovine colostrum and milk. Allergol Immunopathol 29, 229237.
26 Funatogawa, K, Ide, T, Kirikae, F, et al. (2002) Use of immunoglobulin enriched bovine colostrum against oral challenge with enterohaemorrhagic Escherichia coli O157:H7 in mice. Microbiol Immunol 46, 761766.
27 Brooks, HJL, McConnell, MA, Corbett, J, et al. (2006) Potential prophylactic value of bovine colostrum in necrotizing enterocolitis in neonates: an in vitro study on bacterial attachment, antibody levels and cytokine production. FEMS Immunol Med Microbiol 48, 347354.
28 Huguet, A, Sève, B, Le Dividich, J, et al. (2006) Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets. Reprod Nutr Dev 46, 167178.
29 Lallès, JP, Bosi, P, Smidt, H, et al. (2007) Weaning – a challenge to gut physiologist. Livest Sci 108, 8293.
30 Drew, MD & Owen, BD (1988) The provision of passive immunity to colostrum-deprived piglets by bovine or porcine serum immunoglobulins. Can J Anim Sci 68, 12771284.
31 Sangild, PT (2003) Uptake of colostral immunoglobulins by the compromised newborn farm animal. Acta Vet Scand 98, Suppl. 1, 105122.
32 Netea, MG, Van der Meer, JWM, Sutmuller, RP, et al. (2005) From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother 49, 39913996.
33 de Rham, C, Ferrari-Lacraz, S, Jendly, S, et al. (2007) The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res Ther 9, R125.
34 van der Poll, T, Marchunt, A & van Deventer, SJH (1997) The role of interleukin-10 in the pathogenesis of bacterial infection. Clin Microbiol Infect 3, 605607.
35 Wang, B, Dileepan, T, Briscoe, S, et al. (2010) Induction of TGF-β1 and TGF-β1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc Natl Acad Sci U S A 107, 59375942.
36 Shing, CM, Peake, JM, Suzuki, K, et al. (2009) Bovine colostrum modulates cytokine production in human peripheral blood mononuclear cells stimulated with lipopolysaccharide and phytohemagglutinin. J Interferon Cytokine Res 29, 3744.
37 Daudelin, J-F, Lessard, M, Beaudoin, F, et al. (2011) Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs. Vet Res 42, 69.
38 Lauridsen, C & Danielsen, V (2004) Lactational dietary fat levels and source influence milk composition and performance of sows and their progeny. Livest Prod Sci 91, 95105.
39 Aguinaga, MA, Gómez-Carballar, F, Nieto, R, et al. (2011) Production and composition of Iberian sow's milk and use of milk nutrients by the suckling Iberian piglet. Animal 5, 13901397.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed