Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T20:43:11.023Z Has data issue: false hasContentIssue false

The effect of dietary guar gum on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver

Published online by Cambridge University Press:  24 July 2007

John C. Stanley
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU
Eric A. Newsholme
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of a 100 g/kg substitution of guar gum on the body-weight gain, food consumption and faecal dry weight of mice fed on a high-sucrose diet and on the activities of hepatic glucose-6-phosphate dehydrogenase (EC 1. 1. 1. 49), 6-phosphogluconate dehydrogenase (EC 1. I. 1. 44), malate dehydrogenase (oxaloacetate- decarboxylating) (NADP+) (EC I. 1. 1. 40), ATP-citrate (pro-3S)-lyase (EC 4. I.3.8), 6-phosphofructokinase (EC 2.7. 1. 11), pyruvate kinase (EC 2. 7. 1. 40)and fructose-1, Qbisphosphatase (EC 3. 1. 3. 11) were studied.

2. Guar gum had no effect on body-weight gain or food consumption but increased faecal dry weight.

3. Guar gum increasedtheactivitiesofglucose-6-phosphatedehydrogenase, malatedehydrogenase(oxaloacetate- decarboxylating) (NADP+) and 6-phosphofructokinase expressed on a wet-liver-weight basis.

4. Guar gum increased the activities of glucose-6-phosphate dehydrogenase, malate dehydrogenase (oxaloacetate- decarboxylating)(NADP+), ATP-citrate (pro-3S)-lyase and 6-phosphofructokinase expressed on a liver-protein basis.

5. Guar gum increased the activities of glucose-6-phosphate dehydrogenase and malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+) expressed on a body-weight basis.

6. These results suggest that guar gum increases the flux through some pathways of hepatic lipogenesis when mice are fed on high-sucrose diets.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Bataille, D., Freychet, P. & Rosselin, G. (1974). Endocrinology 95, 713721.CrossRefGoogle Scholar
Blackburn, N. A. & Johnson, I. T. (1981). British Journal of Nutrition 46, 239246.CrossRefGoogle Scholar
Bradford, M. M. (1976). Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Brand, I. A. & Söling, H. D. (1974). Journal of Biological Chemistry 249, 78247831.CrossRefGoogle Scholar
Cummings, J. H., Southgate, D. A. T., Branch, W., Wiggins, H. S., Houston, H., Jenkins, D. J. A. & James, W. P. T. (1978). Lancet i, 59.CrossRefGoogle Scholar
Feliu, J. E., Hue, L. & Hers, H.-G. (1977). European Journal of Biochemistry 81, 609617.CrossRefGoogle Scholar
Freedland, R. A. (1967). Journal of Nutrition 91, 489495.CrossRefGoogle Scholar
Gee, J. M., Blackburn, N. A. & Johnson, I. T. (1983). British Journal of Nutrition 50, 215224.CrossRefGoogle Scholar
Inoue, H., Suzuki, F., Fukunishi, K., Adachi, K. & Takeda, Y. (1966). Journal of Biochemistry (Tokyo) 60,543– 553.CrossRefGoogle Scholar
Jenkins, D. J. A., Leeds, A. R., Gassull, M. A., Houston, H., Goff, D. V. & Hill, M. J. (1976). Clinical Science and Molecular Medicine 51, 8P9P.Google Scholar
Jenkins, D. J. A., Newton, C., Leeds, A. R. & Cummings, J. H. (1975). Lancet i, 11161117.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). British Medical Journal i, 13921394.CrossRefGoogle Scholar
Krebs, H. A. & Eggleston, L. V. (1974). Advances in Enzyme Regulation 12, 421434.CrossRefGoogle Scholar
Lowenstein, J. M. (1971). Journal of Biological Chemistry 246, 629632.CrossRefGoogle Scholar
Morgan, L. M., Goulder, T. J., Tsioladis, D., Marks, V. & Alberti, K. G. M. M. (1979). Diabetologia 17, 8589.CrossRefGoogle Scholar
Newsholme, E. A., Brand, K., Lang, J., Stanley, J. C. & Williams, T. (1979). Biochemical Journal 182, 621624.CrossRefGoogle Scholar
Newsholme, E. A., Crabtree, B. & Zammit, V. A. (1980). Ciba Foundation Symposium 73, 245258.Google Scholar
Riou, J.-P., Claus, T. H., Flockhart, D., Corbin, J. & Pilkis, S. J. (1977). Proceedings of the National Academy of Sciences, USA 74, 46154619.CrossRefGoogle Scholar
Rognstad, R. & Katz, J. (1979). Journal of Biological Chemistry 254, 1196911972.CrossRefGoogle Scholar
Romsos, D. R. & Leveillé, G. A. (1974). Advances in Lipid Research 12, 97146.CrossRefGoogle Scholar
Salmon, D. M. W., Bowen, N. L. & Hems, D. A. (1974). Biochemical Journal 142, 611618.CrossRefGoogle Scholar
Southgate, D. A. T. & Durnin, J. V. G. A. (1970). British Journal of Nutrition 24, 517535.CrossRefGoogle Scholar
Trowell, H. C., Southgate, D. A. T., Wolever, T. M. S., Leeds, A. R., Gassull, M. A. & Jenkins, D. J. A. (1976). Lancet i, 967.CrossRefGoogle Scholar