1
Ahima, RS (2006) Metabolic actions of adipocyte hormones: focus on adiponectin. Obesity (Silver Spring)
14, Suppl. 1, 9S–15S.
2
Schulze, MB, Shai, I, Rimm, EB, et al. (2005) Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes
54, 534–539.
3
von Frankenberg, AD, do Nascimento, FV, Gatelli, LE, et al. (2014) Major components of metabolic syndrome and adiponectin levels: a cross-sectional study. Diabetol Metab Syndr
6, 26.
4
Rossmeislova, L, Malisova, L, Kracmerova, J, et al. (2013) Weight loss improves the adipogenic capacity of human preadipocytes and modulates their secretory profile. Diabetes
62, 1990–1995.
5
Simpson, KA & Singh, MA (2008) Effects of exercise on adiponectin: a systematic review. Obesity (Silver Spring)
16, 241–256.
6
Mantzoros, CS, Williams, CJ, Manson, JE, et al. (2006) Adherence to the Mediterranean dietary pattern is positively associated with plasma adiponectin concentrations in diabetic women. Am J Clin Nutr
84, 328–335.
7
Arvidsson, E, Viguerie, N, Andersson, I, et al. (2004) Effects of different hypocaloric diets on protein secretion from adipose tissue of obese women. Diabetes
53, 1966–1971.
8
Keogh, JB, Brinkworth, GD, Noakes, M, et al. (2008) Effects of weight loss from a very-low-carbohydrate diet on endothelial function and markers of cardiovascular disease risk in subjects with abdominal obesity. Am J Clin Nutr
87, 567–576.
9
Wycherley, TP, Brinkworth, GD, Keogh, JB, et al. (2010) Long-term effects of weight loss with a very low carbohydrate and low fat diet on vascular function in overweight and obese patients. J Intern Med
267, 452–461.
10
Trichopoulou, A, Costacou, T, Bamia, C, et al. (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med
348, 2599–2608.
11
Qi, L, Rimm, E, Liu, S, et al. (2005) Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care
28, 1022–1028.
12
Silva, FM, de Almeida, JC & Feoli, AM (2011) Effect of diet on adiponectin levels in blood. Nutr Rev
69, 599–612.
13
Wu, JH, Cahill, LE & Mozaffarian, D (2013) Effect of fish oil on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab
98, 2451–2459.
15
Liberati, A, Altman, DG, Tetzlaff, J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol
62, e1–34.
16
Blüher, M, Rudich, A, Kloting, N, et al. (2012) Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care
35, 342–349.
17
Shademan, Z, Rastmanesh, R & Hedayati, M (2011) Effect of conjugated linoleic acid on serum leptin, adiponectin and body composition in overweight type II diabetic patients. Kowsar Med J
16, 101–107.
18
Brons, C, Jensen, CB, Storgaard, H, et al. (2009) Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol
587, 2387–2397.
19
Varady, KA, Bhutani, S, Klempel, MC, et al. (2011) Improvements in vascular health by a low-fat diet, but not a high-fat diet, are mediated by changes in adipocyte biology. Nutr J
10, 8.
20
Bendsen, NT, Stender, S, Szecsi, PB, et al. (2011) Effect of industrially produced trans fat on markers of systemic inflammation: evidence from a randomized trial in women. J Lipid Res
52, 1821–1828.
21
Sofi, F, Giangrandi, I, Cesari, F, et al. (2010) Effects of a 1-year dietary intervention with n-3 polyunsaturated fatty acid-enriched olive oil on non-alcoholic fatty liver disease patients: a preliminary study. Int J Food Sci Nutr
61, 792–802.
22
Vargas, ML, Almario, RU, Buchan, W, et al. (2011) Metabolic and endocrine effects of long-chain versus essential omega-3 polyunsaturated fatty acids in polycystic ovary syndrome. Metabolism
60, 1711–1718.
23
Taylor, CG, Noto, AD, Stringer, DM, et al. (2010) Dietary milled flaxseed and flaxseed oil improve N-3 fatty acid status and do not affect glycemic control in individuals with well-controlled type 2 diabetes. J Am Coll Nutr
29, 72–80.
24
Troseid, M, Arnesen, H, Hjerkinn, EM, et al. (2009) Serum levels of interleukin-18 are reduced by diet and n-3 fatty acid intervention in elderly high-risk men. Metabolism
58, 1543–1549.
26
Follmann, D, Elliott, P, Suh, I, et al. (1992) Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol
45, 769–773.
27
DerSimonian, R & Laird, N (1986) Meta-analysis in clinical trials. Control Clin Trials
7, 177–188.
28
Peters, JL, Sutton, AJ, Jones, DR, et al. (2007) Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat Med
26, 4544–4562.
29
Begg, CB & Mazumdar, M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics
50, 1088–1101.
30
Egger, M, Davey Smith, G, Schneider, M, et al. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ
315, 629–634.
31
Cardillo, S, Seshadri, P & Iqbal, N (2006) The effects of a low-carbohydrate versus low-fat diet on adipocytokines in severely obese adults: three-year follow-up of a randomized trial. Eur Rev Med Pharmacol Sci
10, 99–106.
32
Ng, TW, Watts, GF, Barrett, PH, et al. (2007) Effect of weight loss on LDL and HDL kinetics in the metabolic syndrome: associations with changes in plasma retinol-binding protein-4 and adiponectin levels. Diabetes Care
30, 2945–2950.
33
Keogh, JB, Brinkworth, GD & Clifton, PM (2007) Effects of weight loss on a low-carbohydrate diet on flow-mediated dilatation, adhesion molecules and adiponectin. Br J Nutr
98, 852–859.
34
Al-Sarraj, T, Saadi, H, Calle, MC, et al. (2009) Carbohydrate restriction, as a first-line dietary intervention, effectively reduces biomarkers of metabolic syndrome in Emirati adults. J Nutr
139, 1667–1676.
35
Vetter, ML, Wade, A, Womble, LG, et al. (2010) Effect of a low-carbohydrate diet versus a low-fat, calorie-restricted diet on adipokine levels in obese, diabetic participants. Diabetes Metab Syndr Obes
3, 357–361.
36
Yeung, EH, Appel, LJ, Miller, ER, et al. (2010) The effects of macronutrient intake on total and high-molecular weight adiponectin: results from the OMNI-Heart trial. Obesity (Silver Spring)
18, 1632–1637.
37
Summer, SS, Brehm, BJ, Benoit, SC, et al. (2011) Adiponectin changes in relation to the macronutrient composition of a weight-loss diet. Obesity
19, 2198–2204.
38
Heggen, E, Klemsdal, TO, Haugen, F, et al. (2012) Effect of a low-fat versus a low-glycemic-load diet on inflammatory biomarker and adipokine concentrations. Metab Syndr Relat Disord
10, 437–442.
39
Rajaie, S, Azadbakht, L, Saneei, P, et al. (2012) The effect of moderate substitution of dietary carbohydrates by fats on serum levels of adipocytokines, inflammatory indices, and biomarkers of endothelial function among women with metabolic syndrome. J Zanjan Univer Med Sci Health Services
20.
40
Krebs, JD, Browning, LM, McLean, NK, et al. (2006) Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Int J Obes (Lond)
30, 1535–1544.
41
Kabir, M, Skurnik, G, Naour, N, et al. (2007) Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. Am J Clin Nutr
86, 1670–1679.
42
Damsgaard, CT, Frokiaer, H, Andersen, AD, et al. (2008) Fish oil in combination with high or low intakes of linoleic acid lowers plasma triacylglycerols but does not affect other cardiovascular risk markers in healthy men. J Nutr
138, 1061–1066.
43
Kratz, M, Swarbrick, MM, Callahan, HS, et al. (2008) Effect of dietary n-3 polyunsaturated fatty acids on plasma total and high-molecular-weight adiponectin concentrations in overweight to moderately obese men and women. Am J Clin Nutr
87, 347–353.
44
Ramel, A, Martinez, A, Kiely, M, et al. (2008) Beneficial effects of long-chain n-3 fatty acids included in an energy-restricted diet on insulin resistance in overweight and obese European young adults. Diabetologia
51, 1261–1268.
45
Sneddon, AA, Tsofliou, F, Fyfe, CL, et al. (2008) Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obesity (Silver Spring)
16, 1019–1024.
46
Micallef, MA & Garg, ML (2009) Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals. Atherosclerosis
204, 476–482.
47
Rizza, S, Tesauro, M, Cardillo, C, et al. (2009) Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis
206, 569–574.
48
Gammelmark, A, Madsen, T, Varming, K, et al. (2012) Low-dose fish oil supplementation increases serum adiponectin without affecting inflammatory markers in overweight subjects. Nutr Res
32, 15–23.
49
Koh, KK, Quon, MJ, Shin, KC, et al. (2012) Significant differential effects of omega-3 fatty acids and fenofibrate in patients with hypertriglyceridemia. Atherosclerosis
220, 537–544.
50
Mohammadi, E, Rafraf, M, Farzadi, L, et al. (2012) Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac J Clin Nutr
21, 511–518.
51
Munro, IA & Garg, ML (2012) Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. Br J Nutr
108, 1466–1474.
52
Simão, ANC, Lozovoy, MAB, Bahls, LD, et al. (2012) Blood pressure decrease with ingestion of a soya product (kinako) or fish oil in women with the metabolic syndrome: role of adiponectin and nitric oxide. Br J Nutr
108, 1435–1442.
53
Zhang, J, Wang, C, Li, L, et al. (2012) Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle-aged and elderly Chinese women. Br J Nutr
108, 1455–1465.
54
Guebre-Egziabher, F, Debard, C, Drai, J, et al. (2013) Differential dose effect of fish oil on inflammation and adipose tissue gene expression in chronic kidney disease patients. Nutrition
29, 730–736.
55
Spencer, M, Finlin, BS, Unal, R, et al. (2013) Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes
62, 1709–1717.
56
Risérus, U, Vessby, B, Arner, P, et al. (2004) Supplementation with trans10cis12-conjugated linoleic acid induces hyperproinsulinaemia in obese men: close association with impaired insulin sensitivity. Diabetologia
47, 1016–1019.
57
Syvertsen, C, Halse, J, Hoivik, HO, et al. (2007) The effect of 6 months supplementation with conjugated linoleic acid on insulin resistance in overweight and obese. Int J Obes (Lond)
31, 1148–1154.
58
Norris, LE, Collene, AL, Asp, ML, et al. (2009) Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am J Clin Nutr
90, 468–476.
59
Zhao, WS, Zhai, JJ, Wang, YH, et al. (2009) Conjugated linoleic acid supplementation enhances antihypertensive effect of ramipril in Chinese patients with obesity-related hypertension. Am J Hypertens
22, 680–686.
60
MacRedmond, R, Singhera, G, Attridge, S, et al. (2010) Conjugated linoleic acid improves airway hyper-reactivity in overweight mild asthmatics. Clin Exp Allergy
40, 1071–1078.
61
Joseph, SV, Jacques, H, Plourde, M, et al. (2011) Conjugated linoleic acid supplementation for 8 weeks does not affect body composition, lipid profile, or safety biomarkers in overweight, hyperlipidemic men. J Nutr
141, 1286–1291.
62
Nelson, TL, Stevens, JR & Hickey, MS (2007) Adiponectin levels are reduced, independent of polymorphisms in the adiponectin gene, after supplementation with alpha-linolenic acid among healthy adults. Metabolism
56, 1209–1215.
63
Lithander, FE, Keogh, GF, Wang, Y, et al. (2008) No evidence of an effect of alterations in dietary fatty acids on fasting adiponectin over 3 weeks. Obesity (Silver Spring)
16, 592–599.
64
Ratliff, JC, Mutungi, G, Puglisi, MJ, et al. (2008) Eggs modulate the inflammatory response to carbohydrate restricted diets in overweight men. Nutr Metab (Lond)
5, 6.
65
Vega-Lopez, S, Matthan, NR, Ausman, LM, et al. (2009) Substitution of vegetable oil for a partially-hydrogenated fat favorably alters cardiovascular disease risk factors in moderately hypercholesterolemic postmenopausal women. Atherosclerosis
207, 208–212.
66
Kalgaonkar, S, Almario, RU, Gurusinghe, D, et al. (2011) Differential effects of walnuts vs almonds on improving metabolic and endocrine parameters in PCOS. Eur J Clin Nutr
65, 386–393.
67
Aronis, KN, Vamvini, MT, Chamberland, JP, et al. (2012) Short-term walnut consumption increases circulating total adiponectin and apolipoprotein A concentrations, but does not affect markers of inflammation or vascular injury in obese humans with the metabolic syndrome: data from a double-blinded, randomized, placebo-controlled study. Metabolism
61, 577–582.
68
Bjermo, H, Iggman, D, Kullberg, J, et al. (2012) Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr
95, 1003–1012.
69
Manning, PJ, Sutherland, WH, Williams, SM, et al. (2012) The effect of lipoic acid and vitamin E therapy in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis
23, 543–549.
70
Kontogianni, MD, Vlassopoulos, A, Gatzieva, A, et al. (2013) Flaxseed oil does not affect inflammatory markers and lipid profile compared to olive oil, in young, healthy, normal weight adults. Metabolism
62, 686–693.
71
Somerset, SM, Graham, L & Markwell, K (2013) Isoenergetic replacement of dietary saturated with monounsaturated fat via macadamia nuts enhances endothelial function in overweight subjects. e-SPEN J
8, e113–e119.
72
Banga, A, Unal, R, Tripathi, P, et al. (2009) Adiponectin translation is increased by the PPARγ agonists pioglitazone and omega-3 fatty acids. Am J Physiol Endocrinol Metab
296, E480–E489.
73
Bernstein, AM, Ding, EL, Willett, WC, et al. (2012) A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr
142, 99–104.
74
Karbowska, J & Kochan, Z (2006) Role of adiponectin in the regulation of carbohydrate and lipid metabolism. J Physiol Pharmacol
57, Suppl. 6, 103–113.
75
Riserus, U, Vessby, B, Arnlov, J, et al. (2004) Effects of cis-9, trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr
80, 279–283.
76
Hollis, S & Campbell, F (1999) What is meant by intention to treat analysis? Survey of published randomised controlled trials. BMJ
319, 670–674.
77
Moher, D, Liberati, A, Tetzlaff, J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med
6, e1000097.