Skip to main content

Effect of folic acid on prenatal alcohol-induced modification of brain proteome in mice

  • Yajun Xu (a1), Yunan Tang (a1) and Yong Li (a1)

Maternal alcohol consumption during pregnancy can induce central nervous system abnormalities in the fetus, and folic acid supplementation can reverse some of the effects. The objective of the present study was to investigate prenatal alcohol exposure-induced fetal brain proteome alteration and the protective effect of folic acid using proteomic techniques. Alcohol (5·0 g/kg) was given intragastrically from gestational day (GD) 6 to15, with or without 60·0 mg folic acid/kg given intragastrically during GD1–16 to pregnant Balb/c mice. The control group received distilled water only. Results of litter evaluation on GD18 showed that supplementation of folic acid reversed the prevalence of microcephaly induced by alcohol. Proteomic analysis indicated that, under the dosage of the present investigation, folic acid mainly reversed the alcohol-altered proteins involved in energy production, signal pathways and protein translation, which are all important for central nervous system development.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of folic acid on prenatal alcohol-induced modification of brain proteome in mice
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of folic acid on prenatal alcohol-induced modification of brain proteome in mice
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of folic acid on prenatal alcohol-induced modification of brain proteome in mice
      Available formats
Corresponding author
*Corresponding author: Dr Yajun Xu, fax +86 10 82801575, email
Hide All
1Jones, KL & Smith, DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet ii, 9991001.
2Berman, RF & Hannigan, JH (2000) Effects of prenatal alcohol exposure on the hippocampus: spatial behaviour, electrophysiology, and neuroanatomy. Hippocampus 10, 94110.
3Mattson, SN, Schoenfeld, AM & Riley, EP (2001) Teratogenic effects of alcohol on brain and behaviour. Alcohol Res Health 25, 185191.
4Goodlett, CR & Horn, KH (2001) Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health 25, 175184.
5Samson, HH (1986) Microcephaly and fetal alcohol syndrome: human and animal studies. In Alcohol and Brain Development, pp. 167183 [West, JR, editor]. New York: Oxford University Press.
6Streissguth, AP, Aase, JM, Clarren, SK, Randels, SP, LaDue, RA & Smith, DF (1991) Fetal alcohol syndrome in adolescents and adults. JAMA 265, 19611967.
7Centers for Disease Control and Prevention (CDC) (1995) Update: trends in fetal alcohol syndrome – United States, 1979–1993. MMWR Morb Mortal Wkly Rep 44, 249251.
8Roebuck, TM, Mattson, SN & Riley, EP (1999) Behavioral and psychosocial profiles of alcohol-exposed children. Alcohol Clin Exp Res 23, 10701076.
9Kelly, SJ, Day, N & Streissguth, AP (2000) Effects of prenatal alcohol exposure on social behavior in humans and other species. Neurotoxicol Teratol 22, 143149.
10Sampson, PD, Streissguth, AP, Bookstein, FL, Little, RE, Clarren, SK, Dehaene, P, Hanson, JW & Graham, JM Jr (1997) Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorders. Teratology 56, 317326.
11Streissguth, AP & O'Malley, K (2000) Neuropsychiatric implications and long-term consequences of fetal alcohol spectrum disorders. Semin Clin Neuropsychiatry 5, 177190.
12Kaneko, WM, Riley, EP & Ehlers, CL (1993) Electrophysiological and behavioral findings in rats prenatally exposed to alcohol. Alcohol 10, 169178.
13Cronise, K, Marino, MD, Tran, TD & Kelly, SJ (2001) Critical periods for the effects of alcohol exposure on learning in rats. Behav Neurosci 115, 138145.
14Shah, KR & West, M (1984) Behavioral changes in rat following perinatal exposure to ethanol. Neurosci Lett 47, 145148.
15Shaw, GM, Lammer, EJ, Wasserman, CR, O'Malley, CD & Tolarova, MM (1995) Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet 345, 393396.
16Kalter, H (2000) Folic acid and human malformations: a summary and evaluation. Reprod Toxicol 14, 463476.
17Cogswell, ME, Weisberg, P & Spong, C (2003) Cigarette smoking, ethanol use and adverse pregnancy outcomes: implications for micronutrient supplementation. J Nutr 133, 1722S1731S.
18Bailey, LB, Rampersaud, GC & Kauwell, GP (2003) Folic acid supplements and fortification affect the risk for neural tube defects, vascular disease and cancer: evolving science. J Nutr 133, 1961S1968S.
19Lalonde, R, Joyal, CC & Botez, MI (1993) Effects of folic acid and folinic acid on cognitive and motor behaviors in 20-month-old rats. Pharm Biochem Behav 44, 703707.
20Kronick, JN (1976) Teratogenic effects of ethyl ethanol administered to pregnant mice. Am J Obstet Gynecol 124, 676680.
21Essien, FB & Wannberg, SL (1993) Methionine but not folinic acid or vitamin B12 alters the frequency of neural tube defects in Axd mutant mice. J Nutr 123, 2734.
22Padmanabhan, R, Ibrahim, A & Bener, A (2002) Effect of maternal methionine pre-treatment on ethanol-induced exencephaly and axial skeletal dysmorphogenesis in mouse fetuses. Drug Alcohol Depend 65, 263281.
23Bradford, M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
24Hannigan, JH (1996) What research with animals is telling us about alcohol related neuro-developmental disorder. Pharmacol Biochem Behav 33, 489499.
25Stoler, JM & Holmes, LB (1999) Under-recognition of prenatal alcohol effects in infants of known alcohol abusing women. J Pediatr 135, 430436.
26Anonymous (1991) Prevention of neural tube defects: results of the Medical Research Council vitamin study. MRC Vitamin Study Research Group. Lancet 338, 131137.
27Czeizel, AE & Dudas, I (1992) Prevention of the first occurrence of neural tube defects by periconceptional vitamin supplementation. N Engl J Med 327, 18321835.
28Jae-Ho, S & Kohei, S (1999) Folic acid supplementation of pregnant mice suppresses heat-induced neural tube defects in the offspring. J Nutr 129, 20702073.
29Guerri, C (1998) Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res 22, 304312.
30Xu, Y, Liu, P & Li, Y (2005) Impaired development of mitochondria plays a role in the fetal alcohol syndrome. Birth Defects Res A 73, 8391.
31Todd, A, Cossons, N, Aitken, A, Price, GB & Zannis-Hadjopoulos, M (1998) Human cruciform binding protein belongs to the 14-3-3 family. Biochemistry 37, 1431714325.
32Gachet, Y, Tournier, S, Lee, M, Lazaris-Karatzas, A, Poulton, T & Bommer, UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112, 12571271.
33Yarm, FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22, 62096221.
34Jung, J, Kim, M, Kim, MJ, Kim, J, Moon, J, Lim, JS, Kim, M & Lee, K (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na,K-ATPase α subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279, 4986849875.
35Davis, RL & Syapin, PJ (2005) Interactions of alcohol and nitric-oxide synthase in the brain. Brain Res Brain Res Rev 49, 494504.
36McGuffin, R, Goff, P & Holman, RS (1975) Effect of diet and ethanol on the development of folate deficiency in the rat. Br J Haematol 31, 185192.
37McMartin, KE, Shiao, CQ, Collins, TD & Redetzki, HM (1985) Acute ethanol ingestion by humans and subacute treatment of rats increase urinary folate excretion. Alcohol 2, 473477.
38Muldoon, RT & McMartin, KE (1994) Ethanol acutely impairs the renal conservation of 5-methyltetrahydrofolate in the isolated perfused rat kidney. Ethanol Clin Exp Res 18, 333339.
39Wagner, C (1995) Biochemical role of folate in cellular metabolism. In Folate in Health and Disease, pp. 2342 [Bailey, LB, editor]. New York: Marcel Dekker Inc.
40Hibbard, BM (1964) The role of folic acid in pregnancy; with particular reference to anaemia, abruption and abortion. J Obstet Gynecol Br Commonw 71, 529542.
41Chanarin, I, Rothman, D, Ward, A & Perry, J (1968) Folate status and requirement in pregnancy. Br Med J 2, 390394.
42Verhaar, MC, Stores, E & Rabelink, TJ (2002) Folic acids and cardiovascular disease. Arterioscler Thromb Vasc Biol 22, 613.
43Finnell, RH, Shaw, GM, Lammer, EJ, Brandl, KL, Carmichael, SL & Rosenquist, TH (2004) Gene-nutrient interactions: importance of folates and retinoids during early embryogenesis. Toxicol Appl Pharm 198, 7585.
44Xu, Y, Li, Y, Tang, Y, Wang, K, Shen, X, Long, Z & Zheng, X (2006) The maternal combined supplementation of folic acid and vitamin B(12) suppresses ethanol-induced developmental toxicity in mouse fetuses. Reprod Toxicol 22, 5661.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 68 *
Loading metrics...

Abstract views

Total abstract views: 109 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.