Skip to main content Accessibility help
×
×
Home

Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice

  • Tulika Arora (a1) (a2), Jelena Anastasovska (a3), Glen Gibson (a4), Kieran Tuohy (a4), Raj Kumar Sharma (a2), Jimmy Bell (a3) and Gary Frost (a1)...
Abstract

There is an increased interest in investigating the relationship between the gut microbiota and energy homeostasis. Probiotics are health beneficial microbes mainly categorised under the genus Lactobacillus and Bifidobacterium, which when administered in adequate amounts confer health benefits to the host, and have been implicated in various physiological functions. The potential role of probiotics in energy homeostasis is a current and an emerging area of research. In the present study, Lactobacillus acidophilus NCDC 13 was used to evaluate its anti-obesity potential in diet-induced obese (C57BL/6) mice. The probiotic bacterial culture was administered in Indian yogurt preparation called ‘dahi’, prepared using native starter cultures, and compared with control dahi containing only dahi starter cultures. The dietary intervention was followed for 8 weeks, and whole-body fat composition, and liver and muscle adiposity were measured using MRI. Changes in gut microbiota were assessed by fluorescent in situ hybridisation in faeces and caecal contents. The feeding of the probiotic brought no changes in body-weight gain, food and dahi intake when compared with the control dahi-fed animals. No significant changes in body fat composition, liver and muscle adiposity were also observed. At the end of the dietary intervention, a significant increase (P < 0·05) in the number of total Bifidobacterium was observed in both faeces and caecal contents of mice as a result of probiotic dahi administration. Thus, L. acidophilus NCDC 13 supplementation could be beneficial in shifting the gut microbiota balance positively. However, its anti-obesity potential could not be established in the present study and warrants further exploration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Professor G. Frost, fax +44 20 8383 8320, email g.frost@imperial.ac.uk
References
Hide All
1FAO & WHO (2001) Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Report of joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina, October 1–4, pp. 19–20.
2Backhed, F, Manchester, JK, Semenkovich, CF, et al. (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104, 979984.
3Ley, RE, Backhed, F, Turnbaugh, P, et al. (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 1107011075.
4Gill, SR, Pop, M, Deboy, RT, et al. (2006) Metagenomic analysis of the human distal gut microbiome. Science 312, 13551359.
5Yadav, K & Krishnan, A (2008) Changing patterns of diet, physical activity and obesity among urban, rural and slum populations in north India. Obes Rev 9, 400408.
6Yadav, H, Jain, S & Sinha, PR (2006) Effect of skim milk and dahi (yogurt) on blood glucose, insulin, and lipid profile in rats fed with high fructose diet. J Med Food 9, 328335.
7Yadav, H, Jain, S & Sinha, PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23, 6268.
8Yadav, H, Jain, S & Sinha, PR (2008) The effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei on gastropathic consequences in diabetic rats. J Med Food 11, 6268.
9Yadav, H, Jain, S & Sinha, PR (2008) Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J Dairy Res 75, 189195.
10Kushal, R, Anand, SK & Chander, H (2005) Development of direct delivery system for coculture of L. acidophilus and B. bifidum based on micro-entrapment. Milchwissenschaft 60, 130134.
11Kushal, R, Anand, SK & Chander, H (2006) Effect of feeding microentrapped co-culture of L. acidophilus and B. bifidum on the immune response and protection of mice infected with S. typhimurium. Lait 45, 387399.
12Kushal, R, Anand, SK & Chander, H (2006) In vivo demonstration of enhanced probiotic effect of co-immobilized Lactobacillus acidophilus and Bifidobacterium bifidum. Int J Dairy Technol 59, 265271.
13Rycroft, CE, Jones, MR, Gibson, GR, et al. (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91, 878887.
14Harmsen, HJM, Elfferich, P, Schut, F, et al. (1999) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11, 312.
15Langendijk, PS, Schut, F, Jansen, GJ, et al. (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 30693075.
16Franks, AH, Harmsen, HJ, Raangs, GC, et al. (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 33363345.
17Salzman, NH, de Jong, H, Paterson, Y, et al. (2002) Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148, 36513660.
18So, PW, Yu, WS, Kuo, YT, et al. (2007) Impact of resistant starch on body fat patterning and central appetite regulation. PLoS One 2, e1309.
19Esposito, E, Iacono, A, Bianco, G, et al. (2009) Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutr 139, 905911.
20Wang, Y, Xu, N, Xi, A, et al. (2009) Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol 84, 341347.
21Usman, & Hosono, A (2000) Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats. J Dairy Sci 83, 17051711.
22Lee, HY, Park, JH, Seok, SH, et al. (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 1761, 736744.
23Tanida, M, Shen, J, Maeda, K, et al. (2008) High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes Res Clin Pract 2, 159169.
24Lesniewska, V, Rowland, I, Cani, PD, et al. (2006) Effect on components of the intestinal microflora and plasma neuropeptide levels of feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and inulin to adult and elderly rats. Appl Environ Microbiol 72, 65336538.
25Choi, YM, Bae, SH, Kang, DH, et al. (2006) Hypolipidemic effect of lactobacillus ferment as a functional food supplement. Phytother Res 20, 10561060.
26Sato, M, Uzu, K, Yoshida, T, et al. (2008) Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Br J Nutr 99, 10131017.
27Takemura, N, Okubo, T & Sonoyama, K (2010) Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med 235, 849856.
28Hamad, EM, Sato, M, Uzu, K, et al. (2009) Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br J Nutr 101, 716724.
29Mahowald, MA, Rey, FE, Seedorf, H, et al. (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106, 58595864.
30Samuel, BS & Gordon, JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A 103, 1001110016.
31Lee, YK, Ho, PS, Low, CS, et al. (2004) Permanent colonization by Lactobacillus casei is hindered by the low rate of cell division in mouse gut. Appl Environ Microbiol 70, 670674.
32Sanders, ME & Klaenhammer, TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84, 319331.
33Amann, RI, Ludwig, W & Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143169.
34Donkor, ON, Nilmini, SLI, Stolic, P, et al. (2007) Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. Int Dairy J 17, 657665.
35Bielecka, M, Biedrzycka, E & Majkowska, A (2002) Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res Int 35, 125131.
36Dinoto, A, Suksomcheep, A, Ishizuka, S, et al. (2006) Modulation of rat cecal microbiota by administration of raffinose and encapsulated Bifidobacterium breve. Appl Environ Microbiol 72, 784792.
37Zhang, L, Xu, YQ, Liu, HY, et al. (2010) Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol 141, 142148.
38Nanda Kumar, NS, Balamurugan, R, Jayakanthan, K, et al. (2008) Probiotic administration alters the gut flora and attenuates colitis in mice administered dextran sodium sulfate. J Gastroenterol Hepatol 23, 18341839.
39Cani, PD, Neyrinck, AM, Fava, F, et al. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 23742383.
40Waldram, A, Holmes, E, Wang, Y, et al. (2009) Top-down systems biology modeling of host metabotype–microbiome associations in obese rodents. J Proteome Res 8, 23612375.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed