Skip to main content

The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials

  • Hoang V. T. Ho (a1) (a2), John L. Sievenpiper (a1) (a3) (a4) (a5) (a2), Andreea Zurbau (a1) (a2), Sonia Blanco Mejia (a1) (a5) (a2), Elena Jovanovski (a1) (a2), Fei Au-Yeung (a1) (a2), Alexandra L. Jenkins (a1) and Vladimir Vuksan (a1) (a3) (a4) (a2)...

Oats are a rich source of β-glucan, a viscous, soluble fibre recognised for its cholesterol-lowering properties, and are associated with reduced risk of CVD. Our objective was to conduct a systematic review and meta-analysis of randomised-controlled trials (RCT) investigating the cholesterol-lowering potential of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for the risk reduction of CVD. MEDLINE, Embase, CINAHL and Cochrane CENTRAL were searched. We included RCT of ≥3 weeks of follow-up, assessing the effect of diets enriched with oat β-glucan compared with controlled diets on LDL-cholesterol, non-HDL-cholesterol or apoB. Two independent reviewers extracted data and assessed study quality and risk of bias. Data were pooled using the generic inverse-variance method with random effects models and expressed as mean differences with 95 % CI. Heterogeneity was assessed by the Cochran’s Q statistic and quantified by the I 2-statistic. In total, fifty-eight trials (n 3974) were included. A median dose of 3·5 g/d of oat β-glucan significantly lowered LDL-cholesterol (−0·19; 95 % CI −0·23, −0·14 mmol/l, P<0·00001), non-HDL-cholesterol (−0·20; 95 % CI −0·26, −0·15 mmol/l, P<0·00001) and apoB (−0·03; 95 % CI −0·05, −0·02 g/l, P<0·0001) compared with control interventions. There was evidence for considerable unexplained heterogeneity in the analysis of LDL-cholesterol (I 2=79 %) and non-HDL-cholesterol (I 2=99 %). Pooled analyses showed that oat β-glucan has a lowering effect on LDL-cholesterol, non-HDL-cholesterol and apoB. Inclusion of oat-containing foods may be a strategy for achieving targets in CVD reduction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials
      Available formats
Corresponding author
* Corresponding author: V. Vuksan, fax +1 416 864 5538, email
Hide All
1. de Groot, A, Luyken, R & Pikaar, NA (1963) Cholesterol-lowering effect of rolled oats. Lancet (London, England) 2, 303304.
2. Food Directorate Health Products and Food Branch, Health Canada (2010) Oat Products and Blood Cholesterol Lowering. Ottawa: Bureau of Nutritional Sciences.
3. Food and Drug Administration (1997) Food Labeling: Health Claims; Oats and Coronary Heart Disease. Maryland: Health and Human Services.
4. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2011) Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and ‘digestive function’ (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9, 2207.
5. The Board of Food Standards Australia New Zealand (2013) Food Standards, Vol. 1.2.7: Nutrition, Health and Related Claims. Canberra: Commonwealth of Australia.
6. Ministry of Health Malaysia (2014) Malaysian dietary guidelines — Key Message 14 — make effective use of nutrition information on food labels. Putrajaya, Malaysia: Ministry of Health Malaysia. (accessed November 2014).
7. Saenger, A (2011) Cardiovascular Risk Assessment Beyond LDL Cholesterol: Non-HDL Cholesterol, LDL Particle Number, and Apolipoprotein B. Mayo Clinic Communique. (accessed April 2015).
8. National Cholesterol Education Program (NCEP) Expert Panel (2002) Third report on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106, 31433421.
9. Anderson, TJ, Gregoire, J, Hegele, RA, et al. (2013) 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol 29, 151167.
10. The Cochrane Collaboration (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [J Higgins and S Green, editors].
11. Moher, D, Liberati, A, Tetzlaff, J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6, e1000097.
12. Panahi, S (2006) The effect of oat beta-glucan on glycemia and blood lipid risk factors for cardiovascular disease. Thesis, University of Toronto.
13. Food and Drug Administration (2009) Labeling & Nutrition: Guidance for Industry: Evidence-Based Review System for the Scientific Evaluation of Health Claims - Final.
14. Greer, N, Mosser, G, Logan, G, et al. (2000) A practical approach to evidence grading. Jt Comm J Qual Improv 26, 700712.
15. Kris-Etherton, PM & Dietschy, J (1997) Design criteria for studies examining individual fatty acid effects on cardiovascular disease risk factors: human and animal studies. Am J Clin Nutr 65, Suppl., 1590S1596S.
16. Chen, WJ & Anderson, JW (1981) Soluble and insoluble plant fiber in selected cereals and vegetables. Am J Clin Nutr 34, 10771082.
17. Anderson, JW & Bridges, SR (1988) Dietary fiber content of selected foods. Am J Clin Nutr 47, 440447.
18. Whitehead, A, Beck, EJ, Tosh, S, et al. (2014) Cholesterol-lowering effects of oat beta-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr 100, 14131421.
19. Heyland, DK, Novak, F, Drover, JW, et al. (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286, 944953.
20. Ha, V (2013) Effects of dietary pulses on lipid risk factors of cardiovascular disease and oxidative stress. University of Toronto.
21. Elbourne, DR, Altman, DG, Higgins, JP, et al. (2002) Meta-analyses involving cross-over trials: methodological issues. Int J Epidemiol 31, 140149.
22. Amundsen, ÅL, Haugum, B & Andersson, H (2003) Changes in serum cholesterol and sterol metabolites after intake of products enriched with an oat bran concentrate within a controlled diet. Scand J Nutr 47, 6874.
23. Anderson, JW, Gilinsky, NH, Deakins, DA, et al. (1991) Lipid responses of hypercholesterolemic men to oat-bran and wheat-bran intake. Am J Clin Nutr 54, 678683.
24. Berg, A, Konig, D, Deibert, P, et al. (2003) Effect of an oat bran enriched diet on the atherogenic lipid profile in patients with an increased coronary heart disease risk. A controlled randomized lifestyle intervention study. Ann Nutr Metab 47, 306311.
25. Biorklund, M, van Rees, A, Mensink, RP, et al. (2011) Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley: a randomised dose-controlled trial. Eur J Clin Nutr 59, 12721281.
26. Biorklund, M, Holm, J & Onning, G (2008) Serum lipids and postprandial glucose and insulin levels in hyperlipidemic subjects after consumption of an oat beta-glucan-containing ready meal. Ann Nutr Metab 52, 8390.
27. Braaten, JT, Wood, PJ, Scott, FW, et al. (1994) Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr 48, 465474.
28. Bremer, JM, Scott, RS & Lintott, CJ (1991) Oat bran and cholesterol reduction: evidence against specific effect. Aust N Z J Med 21, 422426.
29. Charlton, KE, Tapsell, LC, Batterham, MJ, et al. (2012) Effect of 6 weeks’ consumption of beta-glucan-rich oat products on cholesterol levels in mildly hypercholesterolaemic overweight adults. Br J Nutr 107, 10371047.
30. Davidson, MH, Dugan, LD, Burns, JH, et al. (1991) The hypocholesterolemic effects of beta-glucan in oatmeal and oat bran. A dose-controlled study. JAMA 265, 18331839.
31. Demark-Wahnefried, W, Bowering, J & Cohen, PS (1990) Reduced serum cholesterol with dietary change using fat-modified and oat bran supplemented diets. J Am Diet Assoc 90, 223229.
32. Johnston, L, Reynolds, HR, Hunninghake, DB, et al. (1998) Cholesterol lower benefits of a whole grain oat ready-to-eat cereal. Nutr Clin Care 1, 612.
33. Karmally, W, Montez, MG, Palmas, W, et al. (2005) Cholesterol-lowering benefits of oat-containing cereal in Hispanic Americans. J Am Diet Assoc 105, 967970.
34. Kerckhoffs, DA, Hornstra, G & Mensink, RP (2003) Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. Am J Clin Nutr 78, 221227.
35. Kestin, M, Moss, R, Clifton, PM, et al. (1990) Comparative effects of three cereal brans on plasma lipids, blood pressure, and glucose metabolism in mildly hypercholesterolemic men. Am J Clin Nutr 52, 661666.
36. Leadbetter, J, Ball, MJ & Mann, JI (1991) Effects of increasing quantities of oat bran in hypercholesterolemic people. Am J Clin Nutr 54, 841845.
37. Lepre, F & Crane, S (1992) Effect of oatbran on mild hyperlipidaemia. Med J Aust 157, 305308.
38. Liatis, S, Tsapogas, P, Chala, E, et al. (2009) The consumption of bread enriched with betaglucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes Metab 35, 115120.
39. Lovegrove, JA, Clohessy, A, Milon, H, et al. (2000) Modest doses of beta-glucan do not reduce concentrations of potentially atherogenic lipoproteins. Am J Clin Nutr 72, 4955.
40. Maki, CK, Davidson, HM, Ingram, AK, et al. (2003) Lipid responses to consumption of a beta-glucan containing ready-to-eat cereal in children and adolescents with mild-to-moderate primary hypercholesterolemia. Nutr Res 23, 15271535.
41. Maki, KC, Beiseigel, JM, Jonnalagadda, SS, et al. (2010) Whole-grain ready-to-eat oat cereal, as part of a dietary program for weight loss, reduces low-density lipoprotein cholesterol in adults with overweight and obesity more than a dietary program including low-fiber control foods. J Am Diet Assoc 110, 205214.
42. Mårtensson, O, Biörklund, M, Lambo, AM, et al. (2005) Fermented, ropy, oat-based products reduce cholesterol levels and stimulate the bifidobacteria flora in humans. Nutr Res 25, 429442.
43. Momenizadeh, A, Heidari, R, Sadeghi, M, et al. (2014) Effects of oat and wheat bread consumption on lipid profile, blood sugar, and endothelial function in hypercholesterolemic patients: a randomized controlled clinical trial. ARYA Atheroscler 10, 259265.
44. Noakes, M, Clifton, PM, Nestel, PJ, et al. (1996) Effect of high-amylose starch and oat bran on metabolic variables and bowel function in subjects with hypertriglyceridemia. Am J Clin Nutr 64, 944951.
45. Onning, G, Wallmark, A, Persson, M, et al. (1999) Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia. Ann Nutr Metab 43, 301309.
46. Queenan, KM, Stewart, ML, Smith, KN, et al. (2007) Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr J 6, 6.
47. Reyna-Villasmil, N, Bermudez-Pirela, V, Mengual-Moreno, E, et al. (2007) Oat-derived beta-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia. Am J Ther 14, 203212.
48. Reynolds, HR, Quiter, E & Hunninghake, DB (2000) Whole grain oat cereal lowers serum lipids. Top Clin Nutr 15, 7483.
49. Romero, AL, Romero, JE, Galaviz, S, et al. (1998) Cookies enriched with psyllium or oat bran lower plasma LDL cholesterol in normal and hypercholesterolemic men from Northern Mexico. J Am Coll Nutr 17, 601608.
50. Stewart, FM, Neutze, JM & Newsome-White, R (1992) The addition of oatbran to a low fat diet has no effect on lipid values in hypercholesterolaemic subjects. N Z Med J 105, 398400.
51. Theuwissen, E & Mensink, RP (2007) Simultaneous intake of beta-glucan and plant stanol esters affects lipid metabolism in slightly hypercholesterolemic subjects. J Nutr 137, 583588.
52. Thongoun, P, Pavadhgul, P, Bumrungpert, A, et al. (2013) Effect of oat consumption on lipid profiles in hypercholesterolemic adults. J Med Assoc Thai 96, Suppl. 5, S25S32.
53. Turnbull, WH & Leeds, AR (1987) Reduction of total and LDL-cholesterol in plasma by rolled oats. J Clin Nutr Gastroentrol 2, 177181.
54. Uusitupa, MI, Ruuskanen, E, Makinen, E, et al. (1992) A controlled study on the effect of beta-glucan-rich oat bran on serum lipids in hypercholesterolemic subjects: relation to apolipoprotein E phenotype. J Am Coll Nutr 11, 651659.
55. Van Horn, L, Moag-Stahlberg, A, Liu, KA, et al. (1991) Effects on serum lipids of adding instant oats to usual American diets. Am J Public Health 81, 183188.
56. Van Horn, L, Liu, K, Gerber, J, et al. (2001) Oats and soy in lipid-lowering diets for women with hypercholesterolemia: is there synergy? J Am Diet Assoc 101, 13191325.
57. Whyte, JL, McArthur, R, Topping, D, et al. (1992) Oat bran lowers plasma cholesterol levels in mildly hypercholesterolemic men. J Am Diet Assoc 92, 446449.
58. Wolever, TM, Tosh, SM, Gibbs, AL, et al. (2010) Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr 92, 723732.
59. Zhang, J, Li, L, Song, P, et al. (2012) Randomized controlled trial of oatmeal consumption versus noodle consumption on blood lipids of urban Chinese adults with hypercholesterolemia. Nutr J 11, 54.
60. Beck, EJ, Tapsell, LC, Batterham, MJ, et al. (2010) Oat beta-glucan supplementation does not enhance the effectiveness of an energy-restricted diet in overweight women. Br J Nutr 103, 12121222.
61. Chen, J, He, J, Wildman, RP, et al. (2006) A randomized controlled trial of dietary fiber intake on serum lipids. Eur J Clin Nutr 60, 6268.
62. Cugnet-Anceau, C, Nazare, JA, Biorklund, M, et al. (2010) A controlled study of consumption of beta-glucan-enriched soups for 2 months by type 2 diabetic free-living subjects. Br J Nutr 103, 422428.
63. Davy, BM, Davy, KP, Ho, RC, et al. (2002) High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. Am J Clin Nutr 76, 351358.
64. Gerhardt, AL & Gallo, NB (1998) Full-fat rice bran and oat bran similarly reduce hypercholesterolemia in humans. J Nutr 128, 865869.
65. Gold, KV & Davidson, DM (1988) Oat bran as a cholesterol-reducing dietary adjunct in a young, healthy population. West J Med 148, 299302.
66. Ibrugger, S, Kristensen, M, Poulsen, MW, et al. (2013) Extracted oat and barley beta-glucans do not affect cholesterol metabolism in young healthy adults. J Nutr 143, 15791585.
67. Kabir, M, Oppert, JM, Vidal, H, et al. (2002) Four-week low-glycemic index breakfast with a modest amount of soluble fibers in type 2 diabetic men. Metabolism 51, 819826.
68. Ma, X, Gu, J, Zhang, Z, et al. (2013) Effects of Avena nuda L. on metabolic control and cardiovascular disease risk among Chinese patients with diabetes and meeting metabolic syndrome criteria: secondary analysis of a randomized clinical trial. Eur J Clin Nutr 67, 12911297.
69. McGeoch, SC, Johnstone, AM, Lobley, GE, et al. (2013) A randomized crossover study to assess the effect of an oat-rich diet on glycaemic control, plasma lipids and postprandial glycaemia, inflammation and oxidative stress in type 2 diabetes. Diabet Med 30, 13141323.
70. Naumann, E, van Rees, AB, Onning, G, et al. (2006) Beta-glucan incorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations. Am J Clin Nutr 83, 601605.
71. Pick, ME, Hawrysh, ZJ, Gee, MI, et al. (1996) Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc 96, 12541261.
72. Pins, JJ, Geleva, D, Keenan, JM, et al. (2002) Do whole-grain oat cereals reduce the need for antihypertensive medications and improve blood pressure control? J Fam Pract 51, 353359.
73. Poulter, N, Chang, CL, Cuff, A, et al. (1994) Lipid profiles after the daily consumption of an oat-based cereal: a controlled crossover trial. Am J Clin Nutr 59, 6669.
74. Robitaille, J, Fontaine-Bisson, B, Couture, P, et al. (2005) Effect of an oat bran-rich supplement on the metabolic profile of overweight premenopausal women. Ann Nutr Metab 49, 141148.
75. Saltzman, E, Das, SK, Lichtenstein, AH, et al. (2001) An oat-containing hypocaloric diet reduces systolic blood pressure and improves lipid profile beyond effects of weight loss in men and women. J Nutr 131, 14651470.
76. Swain, JF, Rouse, IL, Curley, CB, et al. (1990) Comparison of the effects of oat bran and low-fiber wheat on serum lipoprotein levels and blood pressure. N Eng J Med 322, 147152.
77. Van Horn, L, Emidy, LA, Liu, KA, et al. (1988) Serum lipid response to a fat-modified, oatmeal-enhanced diet. Prev Med 17, 377386.
78. Zhang, JX, Hallmans, G, Andersson, H, et al. (1992) Effect of oat bran on plasma cholesterol and bile acid excretion in nine subjects with ileostomies. Am J Clin Nutr 56, 99105.
79. Brown, L, Rosner, B, Willett, WW, et al. (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69, 3042.
80. Bartlomiej, S, Justyna, RK & Ewa, N (2012) Bioactive compounds in cereal grains – occurrence, structure, technological significance and nutritional benefits – a review. Food Sci Technol Int 18, 559568.
81. Lee, CJ, Horsley, RD, Manthey, FA, et al. (1997) Comparisons of β-glucan content of barley and oat. Cereal Chem J 74, 571575.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Ho supplementary material
Table S3

 Word (101 KB)
101 KB
Supplementary materials

Ho supplementary material
Table S1

 Word (17 KB)
17 KB
Supplementary materials

Ho supplementary material
Figure S2

 Word (23 KB)
23 KB
Supplementary materials

Ho supplementary material
Table S2

 Word (23 KB)
23 KB
Supplementary materials

Ho supplementary material
Table S4

 Word (20 KB)
20 KB
Supplementary materials

Ho supplementary material
Table S5

 Word (19 KB)
19 KB
Supplementary materials

Ho supplementary material
Figure S4

 Word (23 KB)
23 KB
Supplementary materials

Ho supplementary material
Figure S1

 Word (24 KB)
24 KB
Supplementary materials

Ho supplementary material
Figure S3

 Word (23 KB)
23 KB


Altmetric attention score