Skip to main content Accessibility help
×
Home

Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes

  • Christian Demigné (a1), Christine Morand (a1), Marie-Anne Levrat (a1), Catherine Besson (a1), Corinne Moundras (a1) and Christian Rémésy (a1)...

Abstract

In the present study the actual role of propionic acid in the control of fatty acid and cholesterol synthesis was investigated in isolated liver cells from fed rats maintained in the presence of near-physiological concentrations of glucose, glutamine and acetate. Using 3H2O for lipid labelling, propionate appears as an effective inhibitor of fatty acid synthesis and to a lesser extent of cholesterol synthesis, even at the lowest concentration used (0·6 mmol/l). Butyrate is a potent activator of both synthetic pathways, and the activating effect was not counteracted by propionate. Using 1-[14C]acetate, it was observed that propionate at a moderate concentration, or 1 mmol oleate/l, are both very effective inhibitors of 14C incorporation into fatty acid and cholesterol. This incorporation was drastically inhibited when propionate and oleate were present together in the incubation medium. The net utilization of acetate by rat hepatocytes was impaired by propionate, in contrast to oleate. 1-[14C]butyrate was utilized at a high rate for fatty acid synthesis, but to a lesser extent for cholesterol synthesis; both processes were unaffected by propionate. Intracellular citrate concentration was not markedly depressed by propionate, whereas it was strongly elevated by butyrate. In conclusion, propionate may represent an effective inhibitor of lipid synthesis when acetate is a major source of acetyl-CoA, a situation which is encountered with diets rich in readily-fermentable fibres. The present findings also suggest that propionate may be effective at concentrations close to values measured in vivo in the portal vein.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes
      Available formats
      ×

Copyright

References

Hide All
Arjmandi, B. H., Craig, J., Nathani, S. & Reeves, R. D. (1992) Soluble dietary fiber and cholesterol influence on in vivo hepatic and intestinal cholesterol synthesis in rats. Journal of Nutrition 122, 15591565.
Beaulieu, K. E. & McBurney, M. I. (1992) Changes in pig serum lipids, nutrient digestibility and sterol excretion during cecal infusion of propionate. Journal of Nutrition 122, 241245.
Bergman, E. N. (1990) Energy contribution of volatile fatty acids in the gastrointestinal tract in various species. Physiological Reviews 70, 567590.
Bergstrom, J. D., Wong, G. A., Edwards, P. A. & Edmond, J. (1984) The regulation of acetoacetyl-CoA synthetase activity by modulators of cholesterol synthesis in vivo and the utilization of acetoacetate for cholesterogenesis. Journal of Biological Chemistry 259, 1454814553.
Berry, M. N., Edwards, A. M. & Barrit, G. J. (1991) Isolated hepatocytes, preparation, properties and applications. In Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 21, pp. 1458 [Burdon, R.H. and Van Kuippenberg, P. H., editors]. Amsterdam: Elsevier.
Buckley, B. M. & Williamson, D. H. (1977) Origin of blood acetate in the rat. Biochemical Journal 166, 539545.
Cameron-Smith, D., Collier, G. R. & O'Dea, K. (1994) Effect of propionate on in vivo carbohydrate metabolism in streptozotocin-induced diabetic rats. Metabolism 43, 728734.
Chen, W. J. L., Anderson, J. W. & Jennings, D. (1984) Propionate may mediate the hypocholesterolemic effects of certain soluble fibers in cholesterol-fed rats. Proceedings of the Society for Experimental Biology and Medicine 175, 215218.
Corkey, B. E., Martin-Roquero, A., Walajtys-Rode, E., Williams, R. J. & Williamson, J. R. (1982) Regulation of branched-chain α-ketoacid pathway in the liver. Journal of Biological Chemistry 257, 96689676.
Crabtree, B., Gordon, M.-J. & Christie, S. L. (1990) Measurement of the rates of acetyl-CoA hydrolysis and synthesis from acetate in rat hepatocytes and the role of these fluxes in substrate cycling. Biochemical Journal 270, 219225.
Crabtree, B., Souter, M.-J. & Anderson, S. E. (1989) Evidence that the production of acetate in rat hepatocytes is a predominantly cytoplasmic process. Biochemical Journal 257, 673678.
Demigné, C. & Rémésy, C. (1994) Short chain fatty acids and hepatic metabolism. In Short Chain Fatty Acids, pp. 272282 [Binder, H.J., Cummings, J. and Soergel, K. H., editors]. Lancaster: Kluwer.
Demigné, C., Yacoub, C, Rémésy, C. & Fafournoux, P. (1986) Propionate and butyrate metabolism in rat or sheep hepatocytes. Biochimica et Biophysica Acta 874, 535542.
Favier, M.-L., Rékmésy, C., Moundras, C. & Demigné, C. (1995) Effectiveness of low levels of cyclodextrin for lowering plasma lipids in rats. Metabolism 44, 200207.
Gibbons, G. F., Attwell Thomas, C. P. & Pullinger, C. R. (1986) The metabolic route by which oleate is converted into cholesterol in rat hepatocytes. Biochemical Journal 235, 1924.
Gordon, M. J. & Crabtree, B. (1992) The effects of propionate and butyrate on acetate metabolism in rat hepatocytes. International Journal of Biochemistry 24, 10291031.
Illman, R. J., Topping, D. L., McIntosh, G. H., Trimble, R. P., Storer, G. B., Taylor, M. N. & Cheng, B.-Q. (1988) Hypocholesterolaemic effects of dietary propionate studies in whole animals and in perfused rat liver. Annals of Nutrition and Metabolism 32, 97107.
Levrat, M.-A., Favier, M.-L., Moundras, C, Rémésy, C., Demigné, C. & Morand, C. (1994) Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. Journal of Nutrition 124, 531538.
Levrat, M.-A., Rémésy, C. & Demigné, C. (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.
Lowe, D. M. & Tubbs, P. K. (1985) Succinylation and inactivation of 3-hydroxy-3-methylglutaryl CoA synthase by succinyl CoA and its possible relevance in the control of ketogenesis. Biochemical Journal 232, 3742·1.
Mellanby, J. & Williamson, D. H. (1974) Acetoacetate. In Methods of Enzymatic Analysis, Vol. 4, pp. 18401843 [Bergmeyer, H. U., editor]. New York: Academic Press.
Möllering, H. (1989) Citrate determination. In Methods of Enzymatic Analysis, Vol. 7, pp. 212, [Bergmeyer, H. U. editor]. Weinheim: VCH.
Morand, C., Besson, C., Demigné, C. & Rémésy, C. (1994 a) Importance of the modulation of glycolysis in the control of lactate metabolism by fatty acids in the isolated hepatocytes from fed rats. Archives of Biochemistry and Biophysics 309, 254260.
Morand, C., Levat, M.-A., Besson, C., Demigné, C. & Rémésy, C. (1994 b) Effects of a diet rich in resistant starch on hepatic lipid metabolism in the rat. Journal of Nutritional Biochemistry 5, 138144.
Moundras, C., Behr, S. R., Demigné, C., Mazur, A. & Rémésy, C. (1994) Fermentable carbohydrates which enhance bile acid excretion exert a cholesterol lowering effect in rats together with depressed apolipoprotein E-rich HDL. Journal of Nutrition 124, 21792188.
Nishina, P. M. & Freedland, P. M. (1990) Effects of propionate on lipid biosynthesis in isolated rat hepatocytes. Journal of Nutrition 120, 668673.
Rémésy, C. & Demigné, C. (1974) Determination of volatile fatty acids in plasma after ethanolic extraction. Biochemical Journal 141, 8591.
Rémésy, C., Demigné, C. & Morand, C. (1992) Metabolism and utilisation of short chain fatty acids produced by colonic fermentations. In Dietary Fibre - A Component of Food, pp. 137165 [Schweizer, T.F. and Edwards, C. A., editors]. London: Springer.
Roitelman, J. & Shechter, I. (1989) Studies on the catalytic site of rat liver HMG-CoA reductase: interaction with CoA-thioesters and inactivation with iodoacetamide. Journal of Lipid Research 30, 97107.
Sendl, A, Schliack, M., Löser, R., Stanislaus, F. & Wagner, H. (1992) Inhibition of cholesterol synthesis in vitro by extracts and isolated compounds prepared from garlic and wild garlic. Atherosclerosis 94, 7595.
Soboll, S., Elbers, R., Scholz, R. & Heldt, H.-W. (1980) Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 361, 6976.
Stark, A. H. & Madar, Z. (1993) In vitro production of short-chain fatty acids by bacterial fermentation of dietary fibre compared with effects of those fibers on hepatic sterol synthesis in rats. Journal of Nutrition 123, 21662173.
Truswell, A. S. & Beynen, A. C. (1992) Dietary fibre and plasma lipids: potential for prevention and treatment of hyperlipidaemias. In Dietary Fibre - A Component of Food, pp. 295332 [Schweizer, T.F. and Edwards, C. A., editors]. London: Springer.
Venter, C. S., Vorster, H. H. & Van der Nest, D. G. (1990) Comparison between physiological effects of konjac-glucomannan and propionate in baboons fed ‘western’ diets. Journal of Nutrition 120, 10461053.
Williamson, D. H. & Mellanby, J. (1974) D-3-Hydroxybutyrate. In Methods of Enzymatic Analysis, Vol. 4, pp. 18361839 [Bergmeyer, H. U., editor]. New York: Academic Press.
Wright, R. S., Anderson, J. W. & Bridges, S. R. (1990) Propionate inhibits hepatocyte lipid synthesis. Proceedings of the Society for Experimenial Biology and Medicine 195, 2629.
Zhang, Y., Argarwal, K. C., Beylot, M., Soloviev, M., David, F., Reider, M. W., Anderson, V. E., Tserng, K.-Y. & Brunengraber, H. (1994) Nonhomogeneous labelling of liver extra-mitochondria1 acetyl-CoA. Journal of Biological Chemistry 269, 1102511029.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed