Skip to main content
×
×
Home

Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain

  • Kuresh A. Youdim (a1) and Stanley G. Deans (a1)
Abstract

The present study measured changes in antioxidant enzyme activity in, and the phospholipid fatty acid composition of the ageing rat brain and tested whether dietary supplementation with thyme oil or thymol could provide beneficial effects. There were significant declines in superoxide dismutase (EC 1.15.1.1) and glutathione peroxidase (EC 1.11.1.9) activities and the total antioxidant status in the untreated rats with age, while thyme-oil- and thymol-fed rats maintained significantly higher antioxidant enzyme activities and total antioxidant status. The proportions of 18: 2n−6, 20: 1n−9, 22: 4n−6 and 22: 5n−3 in the brain phospholipids resulting from all three dietary treatments were significantly higher in 28-month-old rats than in 7-month-old rats. Only 20: 1n−9 levels in 28-month-old thyme-oil- and thymol-treated rats were significantly higher than in the age-matched control. The proportion of 22: 6n−3 in brain phospholipids, which declined with age in control rats, was also significantly higher in rats given either supplement. This latter finding is particularly important as optimum levels of 22: 6n−3 are required for normal brain function. These results highlight the potential benefit of thyme oil as a dietary antioxidant.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Stanley Deans, fax +44 (0)1292 525071, email S.Deans@au.sac.ac.uk
References
Hide All
Ansari, KA, Kaplan, E & Shoeman, D (1989) Age-related changes in lipid peroxidation and protective enzymes in the central nervous system. Growth Development and Aging 53, 117121.
Barja de Quiroga, G, López-Torres, M & Pérez-Campo, R (1992) Relationship between antioxidants, lipid peroxidation and aging. In Free Radicals and Aging, pp. 109124 [Emerit, I and Chance, B, editors] Basel: Birkhauser Verlag.
Barja de Quiroga, G, Pérez-Campo, R & López-Torres, M (1990) Antioxidant defences and peroxidation in liver and brain of aged rats. Biochemical Journal 272, 247250.
Benzi, G, Pastoris, O & Villa, RF (1988) Changes induced by ageing and drug treatment on cerebral enzymatic antioxidant systems. Neurochemistry Research 13, 467478.
Bourre, JM, Bonneil, M, Clément, M, Dumont, O, Durand, G, Lafont, H, Nalbone, G & Piciotti, M (1993) Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukotrienes and Essential Fatty Acids 48, 515.
Cao, G, Giovanoni, M & Prior, RL (1996) Antioxidant capacity in different tissues of young and old rats. Proceedings of the Society for Experimental Biology and Medicine 211, 359365.
Chalon, S, Delion-Vancassel, S, Belzung, C, Guilloteau, D, Leguisquet, AM, Besnard, JC & Durand, G (1998) Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. Journal of Nutrition 128, 25122519.
Christie, WW (1982) Lipid Analysis, 2nd ed. Oxford: Pergamon Press.
Clark, GS (1995) An aroma chemical profile: thymol. Perfumer and Flavorist 20, 4144.
Cohen, BM & Zubenko, GS (1985) Aging and the biophysical properties of cell membranes. Life Sciences 37, 14031409.
Dahn, HC, Benedetti, MS & Dostert, P (1983) Differential changes in superoxide dismutase activity in brain and liver of old rats and mice. Journal of Neurochemistry 40, 10031007.
Deans, SG, Noble, RC, Macpherson, A, Penzes, L & Imre, SG (1994) A new type of approach to modify lipid patterns in ageing mice. Natural antioxidants of plant origin. In Aspects of Ageing and Disease, pp. 173177 [Knook, DL, and Hofecker, G, editors]. Vienna: Facultas Universitatsverlag.
Deans, SG, Noble, RC, Penzes, L & Bergi, E (1993a) Natural antioxidants from aromatic and medicinal plants. In Role of Free Radicals in Biological Systems, pp. 159165 [Fehér, J, Blázovics, A, Matkovics, B and Mézes, M, editors]. Budapest: Akademiai Kiado.
Deans, SG, Noble, RC, Penzes, L & Imre, SG (1993 b) Promotional effects of plant volatile oils on the polyunsaturated fatty acid status during ageing. Age 16, 7174.
Deans, SG & Svoboda, KP (1990) Biotechnology and bioactivity of culinary and medicinal plants. Commonwealth Agricultural Bureau, International AgBiotechnology News & Information 2, 211216.
Gurr, MI, Robinson, MP & James, AT (1969) The mechanism for the formation of polyunsaturated fatty acids by photosynthetic tissue. European Journal of Biochemistry 9, 7078.
Halliwell, B & Gutteridge, JMC (1989) Free Radicals in Biology and Medicine, 2nd ed. Oxford: Clarendon Press.
Harman, D (1995) Role of antioxidant nutrients in ageing, overview. Age 18, 5162.
Kaplan, RJ & Greenwood, CE (1998) Dietary saturated fatty acids and brain function. Neurochemistry Research 23, 615626.
Kurobe, N, Suzuki, F, Kato, K & Sato, T (1990) Sensitive immunoassay of Cu/Zn superoxide dismutase: concentrations in the brain, liver and kidney are not affected by ageing. Biomedical Research 11, 187194.
Lamptey, MS & Walker, BL (1976) A possible dietary role for linolenic acid in the development of the young rat. Journal of Nutrition 106, 8693.
Mizuno, Y & Ohta, K (1986) Regional distribution of TBA products, activities of enzymes regulating the metabolism of oxygen free radicals and some of the related enzymes in adult and aged rat brains. Journal of Neurochemistry 46, 13441352.
Neuringer, M, Anderson, GJ & Connor, WE (1988) The essentiality of n−3 fatty acids for the development and function on the retina and brain. Annual Review in Nutrition 8, 517541.
Neuringer, M & Connor, WE (1986) N-3 fatty acids in the brain and retina: evidence for their essentiality. Nutrition Reviews 44, 285294.
Okuyama, H (1992) Minimum requirements of n−3 and n−6 essential fatty acids for the function of the central nervous system and for the prevention of chronic disease. Proceedings of the Society for Experimental Biology and Medicine 200, 174176.
Onuma, Y, Masuzawa, Y, Ishima, Y & Waku, K (1984) Selective incorporation of docosahexaenoic acid in rat brain. Biochimica et Biophysica Acta 793, 8085.
Rao, G, Xia, E & Richardson, A (1990) Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mechanisms of Ageing and Development 53, 4960.
Recsan, Z, Pagliuca, G, Piretti, MV, Penzes, LG, Youdim, KA, Noble, RC & Deans, SG (1997) Effect of essential oils on the lipids of the retina in the ageing rat. a possible therapeutic use. Journal of Essential Oil Research 9, 5356.
Reiss, U & Gershon, D (1976) Comparisons of cytoplasmic superoxide dismutase in liver, heart, and brain of ageing rats and mice. Biochemical and Biophysical Research Communications 73, 255262.
Salem, N Jr (1989) Omega-3 fatty acids, molecular and biochemical aspects. In New Protective Roles for Selected Nutrients, pp. 109228 [Spiller, G and Scala, J, editors). New York, NY: Alan R. Liss, Inc.
Scott, BL & Bazan, NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proceedings of the National Academy of Sciences USA 86, 29032907.
Semsei, I, Rao, G & Richardson, A (1991) Expression of superoxide dismutase and catalase in rat brain as a function of age. Mechanisms of Ageing and Development 58, 1319.
Socci, DJ, Crandall, BM & Arendash, GW (1995) Chronic antioxidant treatment improves the cognitive performance in aged rats. Brain Research 693, 8894.
Spector, AA & Yoerk, MA (1985) Membrane lipid composition and cellular function. Journal of Lipid Research 26, 10151035.
Stubbs, CD & Smith, AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochimica et Biophysica Acta 779, 89137.
Suzuki, H, Park, SJ, Tamura, M & Ando, S (1998) Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mechanisms of Ageing and Development 16, 119128.
Vanella, A, Villa, RF, Gorini, A, Campisi, A & Giuffridaa-Stella, AM (1989) Superoxide dismutase and cytochrome oxidase activities in light and heavy synaptic mitochondria from rat cerebral cortex during aging. Journal of Neuroscience Research 22, 351355.
Vitorica, J, Machado, A & Satrustegni, J (1984) Age-dependent variations in peroxide utilising enzymes from rat brain mitochondria and cytoplasm. Journal of Neurochemistry 42, 351356.
Wahnon, R, Mokady, S & Cogan, U (1989) Age and membrane fluidity. Mechanisms of Ageing and Development 50, 249255.
Yamamoto, N, Okaniwa, Y, Mori, S, Nomura, M & Okuyama, H (1991) Effects of high-linoleate and a high alpha-linolenate diet on the learning ability of aged rats. Evidence against an autoxidation-related lipid peroxide theory of aging. Journal of Gerontology 46, 1722.
Yamamoto, N, Saitoh, M, Moriuchi, A, Nomura, M & Okuyuma, H (1987) Effects of dietary alpha-linolenate/linoleate balance on brain lipid composition and learning ability of rats. Journal of Lipid Research 28, 144151.
Youdim, K (1997) Potential beneficial effects of thyme oil and thymol on aspects of ageing processes. PhD Thesis, University of Strathclyde.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 6
Total number of PDF views: 439 *
Loading metrics...

Abstract views

Total abstract views: 721 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th June 2018. This data will be updated every 24 hours.