Skip to main content
×
×
Home

Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: a systematic review and meta-analysis

  • Alexandra Ferreira Vieira (a1), Rochelle Rocha Costa (a2) (a1), Rodrigo Cauduro Oliveira Macedo (a2) (a3), Leandro Coconcelli (a2) (a1) and Luiz Fernando Martins Kruel (a2) (a1)...
Abstract

This study aimed to verify the effect of aerobic exercise performed in the fasted v. fed states on fat and carbohydrate metabolism in adults. Searches were conducted in March 2015, and updated in July 2016, using PubMed®, Scopus and Cochrane databases (terms: ‘fasting’, ‘exercise’, ‘aerobic exercise’, ‘substrate’, ‘energy metabolism’, ‘fat’, ‘glucose’, ‘insulin’ and ‘adult’) and references from selected studies. Trials that compared the metabolic effects of aerobic exercise (duration ≤120 min) performed in the fasted v. fed states in adults were accepted. The outcomes evaluated were fat oxidation during exercise and the plasma concentrations of insulin, glucose and NEFA before and immediately after exercise; two independent reviewers extracted the data (A. F. V. and L. C.). The results were presented as weighted mean differences between treatments, with 95 % CI. Of 10 405 articles identified, twenty-seven studies – with a total of 273 participants – were included. There was a significant increase in fat oxidation during exercise performed in the fasted, compared with fed, state (−3·08 g; 95 % CI −5·38, −0·79; I 2 39·1 %). The weighted mean difference of NEFA concentrations was not significantly different between states (0·00 mmol/l; 95 % CI −0·07, 0·08; I 2 72·7 %). However, the weighted mean differences of glucose (0·78 mmol/l; 95 % CI 0·43, 1·14; I 2 90·8 %) and insulin concentrations (104·5 pmol/l; 95 % CI 70·8, 138·2; I 2 94·5 %) were significantly higher for exercise performed in the fed state. We conclude that aerobic exercise performed in the fasted state induces higher fat oxidation than exercise performed in the fed state.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: a systematic review and meta-analysis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: a systematic review and meta-analysis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: a systematic review and meta-analysis
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: A. F. Vieira, fax +55 51 3308 5820, email alexandrafvieira@hotmail.com
References
Hide All
1. Longo, VD & Mattson, MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19, 181192.
2. Maughan, RJ, Fallah, J & Coyle, EF (2010) The effects of fasting on metabolism and performance. Br J Sports Med 44, 490494.
3. Cahill, GF Jr (2006) Fuel metabolism in starvation. Annu Rev Nutr 26, 122.
4. Jeukendrup, AE (2003) Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem Soc Trans 31, 12701273.
5. De Bock, K, Richter, EA, Russell, AP, et al. (2005) Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. J Physiol 564, 649660.
6. Horowitz, JF, Mora-Rodriguez, R, Byerley, LO, et al. (1997) Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol 273, E768E775.
7. Coyle, EF, Jeukendrup, AE, Wagenmakers, AJ, et al. (1997) Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol 273, E268E275.
8. Spriet, LL (2014) New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med 44, S87S96.
9. Bassuk, SS & Manson, JE (2005) Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol 99, 11931204.
10. Donnelly, JE, Blair, SN, Jakicic, JM, et al. (2009) American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41, 459471.
11. Slentz, CA, Duscha, BD, Johnson, JL, et al. (2004) Effects of the amount of exercise on body weight, body composition, and measures of central obesity. Arch Intern Med 164, 3139.
12. Goodpaster, BH, Katsiaras, A & Kelley, DE (2003) Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52, 21912197.
13. Rosenkilde, M, Nordby, P, Nielsen, LB, et al. (2010) Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men. Int J Obes 34, 871877.
14. Venables, MC & Jeukendrup, AE (2008) Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc 40, 495502.
15. Robinson, SL, Hattersley, J, Frost, GS, et al. (2015) Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J Appl Physiol 118, 14151422.
16. Burton, FL, Malkova, D, Caslake, MJ, et al. (2010) Substrate metabolism, appetite and feeding behavior under low and high energy turnover conditions in overweight women. Br J Nutr 104, 12491259.
17. Iwayama, K, Kawabuchi, R, Park, I, et al. (2015a) Transient energy deficit induced by exercise increases 24-h fat oxidation in young trained men. J Appl Physiol 118, 8085.
18. Iwayama, K, Kurihara, R, Nabekura, Y, et al. (2015b) Exercise increases 24-h fat oxidation only when it is performed before breakfast. EBioMedicine 2, 20032009.
19. Shimada, K, Yamamoto, Y, Iwayama, K, et al. (2013) Effects of post-absorptive and postprandial exercise on 24 h fat oxidation. Metabolism 62, 793800.
20. Enevoldsen, LH, Simonsen, L, Macdonald, IA, et al. (2004) The combined effects of exercise and food intake on adipose tissue and splanchnic metabolism. J Physiol 561, 871882.
21. Lee, BM & Wolever, TMS (1998) Effect of glucose, sucrose and fructose on plasma glucose and insulin responses in normal humans: comparison with white bread. Eur J Clin Nutr 52, 924928.
22. Liberati, A, Altman, DG, Tetzlaff, J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151, W-65W-94.
23. Shamseer, L, Moher, D, Clarke, M, et al. (2015) Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, 125.
24. Péronnet, F & Massicotte, D (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16, 2329.
25. Jeukendrup, AE & Wallis, GA (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 26, S28S37.
26. Deeks, JJ, Higgins, JPT & Altman, DG (editors) (2011) Chapter 9: Analysing data and undertaking meta-analysis. In Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 (updated March 2011) [JPT Higgins and S Green, editors]. The Cochrane Collaboration. http://handbook.cochrane.org/CCAa (accessed September 2015).
27. Higgins, JPT, Deeks, JJ & Altman, DG (editors) (2008) Chapter 16: Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.1 (updated September 2008) [JPT Higgins and S Green, editors]. The Cochrane Collaboration. http://www.cochrane-handbook.org (accessed July 2015).
28. Higgins, JPT, Thompson, SG, Deeks, JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.
29. Egger, M, Davey Smith, G, Schneider, M, et al. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629634.
30. Bergman, BC & Brooks, GA (1999a, b) Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol 86, 479487.
31. Isacco, L, Thivel, D, Pelle, AM, et al. (2012a, b) Oral contraception and energy intake in women: impact on substrate oxidation during exercise. Appl Physiol Nutr Metab 37, 646656.
32. Montain, SJ, Hopper, MK, Coggan, AR, et al. (1991a, b) Exercise metabolism at different time intervals after a meal. J Appl Physiol 70, 882888.
33. Drenick, EJ, Fisler, JS, Johnson, DG, et al. (1977) The effect of exercise on substrates and hormones during prolonged fasting. Int J Obes 1, 4961.
34. Borer, KT, Wuorinen, E, Chao, C, et al. (2005) Exercise energy expenditure is not consciously detected due to oro-gastric, not metabolic, basis of hunger sensation. Appetite 45, 177181.
35. Erdmann, J, Tholl, S & Schusdziarra, V (2010) Effect of carbohydrate- and protein-rich meals on exercise-induced activation of lipolysis in obese subjects. Horm Metab Res 42, 290294.
36. Little, JP, Chilibeck, PD, Ciona, D, et al. (2009) The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int J Sports Physiol Perform 4, 367380.
37. Schabort, EJ, Bosch, AN, Weltan, SM, et al. (1999) The effect of a preexercise meal on time to fatigue during prolonged cycling exercise. Med Sci Sports Exerc 31, 464471.
38. Shin, YH, Jung, HL, Ryu, JW, et al. (2013) Effects of a pre-exercise meal on plasma growth hormone response and fat oxidation during walking. Prev Nutr Food Sci 18, 175180.
39. Farah, NMF & Gill, JMR (2013) Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men. Br J Nutr 109, 22972307.
40. Maughan, RJ & Gleeson, M (1988) Influence of a 36h fast followed by refeeding with glucose, glycerol or placebo on metabolism and performance during prolonged exercise in man. Eur J Appl Physiol 57, 570576.
41. Paul, GL, Rokusek, JT, Dykstra, GL, et al. (1996) Oat, wheat or corn cereal ingestion before exercise alters metabolism in humans. J Nutr 126, 13721381.
42. Satabin, P, Portero, P, Defer, G, et al. (1987) Metabolic and hormonal responses to lipid and carbohydrate diets during exercise in man. Med Sci Sports Exerc 19, 218223.
43. Whitley, HA, Humphreys, SM, Campbell, IT, et al. (1998) Metabolic and performance responses during endurance exercise after high-fat and high-carbohydrate meals. J Appl Physiol 85, 418424.
44. Willcutts, KF, Wilcox, AR & Grunewald, KK (1988) Energy metabolism during exercise at different time intervals following a meal. Int J Sports Med 9, 240243.
45. Coyle, EF, Coggan, AR, Hemmert, MK, et al. (1985) Substrate usage during prolonged exercise following a preexercise meal. J Appl Physiol 59, 429433.
46. Dohm, GL, Beeker, RT, Israel, RG, et al. (1986) Metabolic responses to exercise after fasting. J Appl Physiol 61, 13631368.
47. Gonzalez, JT, Veasey, RC, Rumbold, PLS, et al. (2013) Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br J Nutr 110, 721732.
48. Kirwan, JP, Cyr-Campbell, D, Campbell, WW, et al. (2001a) Effects of moderate and high glycemic index meals on metabolism and exercise performance. Metabolism 50, 849855.
49. Kirwan, JP, O’Gorman, DJ, Cyr-Campbell, D, et al. (2001b) Effects of a moderate glycemic meal on exercise duration and substrate utilization. Med Sci Sports Exerc 33, 15171523.
50. Little, JP, Chilibeck, PD, Ciona, D, et al. (2010) Effect of low and high glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise. Int J Sport Nutr Exerc Metab 20, 447456.
51. Wu, CL, Nicholas, C, Williams, C, et al. (2003) The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. Br J Nutr 90, 10491056.
52. Massicotte, D, Péronnet, F, Brisson, G, et al. (1990) Oxidation of exogenous carbohydrate during prolonged exercise in fed and fasted conditions. Int J Sports Med 11, 253258.
53. Aziz, AR, Wahid, MF, Png, W, et al. (2010) Effects of Ramadan fasting on 60 min of endurance running performance in moderately trained men. Br J Sports Med 44, 516521.
54. Bouhlel, E, Salhi, Z, Bouhlel, H, et al. (2006) Effect of Ramadan fasting on fuel oxidation during exercise in trained male rugby players. Diabetes Metab 32, 617624.
55. Guéye, L, Seck, D, Samb, A, et al. (2003) Physiological adaptations to exercise during a short-term fasting. Scr Med (Brno) 76, 291296.
56. Ramos-Jiménez, A, Anguiano-Juarez, J, Sifuentes-Juarez, A, et al. (2014) Fasting and postprandial glycemia in response to a strenuous workout in healthy subjects with family history of diabetes and borderline insulin resistance. Exp Clin Cardiol 20, 139161.
57. Ziogas, G & Thomas, TR (1998) Dietary preparation before rest and exercise testing. Nutrition 14, 1116.
58. Horowitz, JF & Klein, S (2000) Lipid metabolism during endurance exercise. Am J Clin Nutr 72, 558S563S.
59. Arner, P, Kriegholm, E, Engfeldt, P, et al. (1990) Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest 85, 893898.
60. Achten, J & Jeukendrup, AE (2004) Optimizing fat oxidation through exercise and diet. Nutr 20, 716727.
61. van Loon, LJ, Greenhaff, PL, Constantin-Teodosiu, D, et al. (2001) The effects of increasing exercise intensity on muscle fuel utilization in humans. J Physiol 536, 295304.
62. Kelley, DE & Goodpaster, BH (2001) Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care 24, 933941.
63. Schrauwen, P, van Aggel-Leijssen, DP, Hul, G, et al. (2002) The effect of a 3-month low-intensity endurance training program on fat oxidation and acetyl-CoA carboxylase-2 expression. Diabetes 51, 22202226.
64. van Loon, LJC, Koopman, R, Stegen, JHCH, et al. (2003) Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 553, 611625.
65. Van Proeyen, K, Szlufcik, K, Nielens, H, et al. (2010) Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol 588, 42894302.
66. Sahlin, K & Harris, RC (2008) Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf) 194, 283291.
67. Spriet, LL & Watt, MJ (2003) Regulatory mechanisms in the interaction between carbohydrate and lipid oxidation during exercise. Acta Physiol Scand 178, 443452.
68. Hargreaves, M, Hawley, JA & Jeukendrup, A (2004) Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci 22, 3138.
69. Marmy-Conus, N, Fabris, S, Proietto, J, et al. (1996) Pre-exercise glucose ingestion and glucose kinetics during exercise. J Appl Physiol 81, 853857.
70. Liu, D, Moberg, E, Kollind, M, et al. (1992) Arterial, arterialized venous, venous and capillary blood glucose measurements in normal man during hyperinsulinaemic euglycaemia and hypoglycaemia. Diabetologia 35, 287290.
71. Brouns, F, Bjorck, I, Frayn, KN, et al. (2005) Glycaemic index methodology. Nutr Res Rev 18, 145171.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Vieira supplementary material
Vieira supplementary material 1

 Word (90 KB)
90 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed