Skip to main content Accessibility help
×
×
Home

Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults

  • Sheila G. West (a1) (a2), Molly D. McIntyre (a1), Matthew J. Piotrowski (a1), Nathalie Poupin (a3), Debra L. Miller (a4), Amy G. Preston (a4), Paul Wagner (a1), Lisa F. Groves (a1) and Ann C. Skulas-Ray (a2)...
Abstract

The consumption of cocoa and dark chocolate is associated with a lower risk of CVD, and improvements in endothelial function may mediate this relationship. Less is known about the effects of cocoa/chocolate on the augmentation index (AI), a measure of vascular stiffness and vascular tone in the peripheral arterioles. We enrolled thirty middle-aged, overweight adults in a randomised, placebo-controlled, 4-week, cross-over study. During the active treatment (cocoa) period, the participants consumed 37 g/d of dark chocolate and a sugar-free cocoa beverage (total cocoa = 22 g/d, total flavanols (TF) = 814 mg/d). Colour-matched controls included a low-flavanol chocolate bar and a cocoa-free beverage with no added sugar (TF = 3 mg/d). Treatments were matched for total fat, saturated fat, carbohydrates and protein. The cocoa treatment significantly increased the basal diameter and peak diameter of the brachial artery by 6 % (+2 mm) and basal blood flow volume by 22 %. Substantial decreases in the AI, a measure of arterial stiffness, were observed in only women. Flow-mediated dilation and the reactive hyperaemia index remained unchanged. The consumption of cocoa had no effect on fasting blood measures, while the control treatment increased fasting insulin concentration and insulin resistance (P= 0·01). Fasting blood pressure (BP) remained unchanged, although the acute consumption of cocoa increased resting BP by 4 mmHg. In summary, the high-flavanol cocoa and dark chocolate treatment was associated with enhanced vasodilation in both conduit and resistance arteries and was accompanied by significant reductions in arterial stiffness in women.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr S. G. West, fax +1 814 863 7525, email sgw2@psu.edu
References
Hide All
1Vanhoutte, PM, Shimokawa, H, Tang, EH, et al. (2009) Endothelial dysfunction and vascular disease. Acta Physiol (Oxf) 196, 193222.
2Vita, JA (2003) Tea consumption and cardiovascular disease: effects on endothelial function. J Nutr 133, 3293S3297S.
3Ras, RT, Zock, PL & Draijer, R (2011) Tea consumption enhances endothelial-dependent vasodilation; a meta-analysis. PLoS One 6, e16974.
4Coimbra, SR, Lage, SH, Brandizzi, L, et al. (2005) The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients. Braz J Med Biol Res 38, 13391347.
5Andrade, AC, Cesena, FH, Consolim-Colombo, FM, et al. (2009) Short-term red wine consumption promotes differential effects on plasma levels of high-density lipoprotein cholesterol, sympathetic activity, and endothelial function in hypercholesterolemic, hypertensive, and healthy subjects. Clinics (Sao Paulo) 64, 435442.
6Fisher, ND, Hughes, M, Gerhard-Herman, M, et al. (2003) Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21, 22812286.
7Heiss, C, Dejam, A, Kleinbongard, P, et al. (2003) Vascular effects of cocoa rich in flavan-3-ols. JAMA 290, 10301031.
8Engler, MB, Engler, MM, Chen, CY, et al. (2004) Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 23, 197204.
9Farouque, HM, Leung, M, Hope, SA, et al. (2006) Acute and chronic effects of flavanol-rich cocoa on vascular function in subjects with coronary artery disease: a randomized double-blind placebo-controlled study. Clin Sci (Lond) 111, 7180.
10Heiss, C, Finis, D, Kleinbongard, P, et al. (2007) Sustained increase in flow-mediated dilation after daily intake of high-flavanol cocoa drink over 1 week. J Cardiovasc Pharmacol Ther 49, 7480.
11Balzer, J, Rassaf, T, Heiss, C, et al. (2008) Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients: a double-masked, randomized, controlled trial. J Am Coll Cardiol 51, 21412149.
12Monahan, KD, Feehan, RP, Kunselman, AR, et al. (2011) Dose-dependent increases in flow-mediated dilation following acute cocoa ingestion in healthy older adults. J Appl Physiol 111, 15681574.
13Njike, VY, Faridi, Z, Shuval, K, et al. (2011) Effects of sugar-sweetened and sugar-free cocoa on endothelial function in overweight adults. Int J Cardiol 149, 8388.
14Shrime, MG, Bauer, SR, McDonald, AC, et al. (2011) Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J Nutr 141, 19821988.
15Vlachopoulos, C, Aznaouridis, K, Alexopoulos, N, et al. (2005) Effect of dark chocolate on arterial function in healthy individuals. Am J Hypertens 18, 785791.
16Schroeter, H, Heiss, C, Balzer, J, et al. (2006) Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 103, 10241029.
17Faridi, Z, Njike, VY, Dutta, S, et al. (2008) Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trial. Am J Clin Nutr 88, 5863.
18Davison, K, Coates, AM, Buckley, JD, et al. (2008) Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects. Int J Obes 32, 12891296.
19Knorr, M, Hausding, M, Kroller-Schuhmacher, S, et al. (2011) Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-glutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan. Arterioscler Thromb Vasc Biol 31, 22232231.
20Vlachopoulos, CV, Alexopoulos, NA, Aznaouridis, KA, et al. (2007) Relation of habitual cocoa consumption to aortic stiffness and wave reflections, and to central hemodynamics in healthy individuals. Am J Cardiol 99, 14731475.
21Nichols, WW & Epstein, BJ (2009) Actions of selected cardiovascular hormones on arterial stiffness and wave reflections. Curr Pharm Des 15, 304320.
22Payne, M, Hurst, W, Stuart, D, et al. (2010) Determination of total procyanidins in selected chocolate and confectionery products using DMAC. J AOAC Int 93, 8996.
23Heffernan, KS, Kuvin, JT, Sarnak, MJ, et al. (2011) Peripheral augmentation index and vascular inflammation in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 26, 25152521.
24Patvardhan, E, Heffernan, KS, Ruan, J, et al. (2011) Augmentation index derived from peripheral arterial tonometry correlates with cardiovascular risk factors. Cardiol Res Pract 2011, 253758.
25Recio-Rodriguez, JI, Gomez-Marcos, MA, Patino-Alonso, MC, et al. (2012) Cocoa intake and arterial stiffness in subjects with cardiovascular risk factors. Nutr J 11, 8.
26Ou, B, Hampsch-Woodill, M & Prior, RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49, 46194626.
27Huang, D, Ou, B, Hampsch-Woodill, M, et al. (2002) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J Agric Food Chem 50, 18151821.
28Singleton, VL & Rossi, JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16, 144158.
29Nelson, BC & Sharpless, KE (2003) Quantification of the predominant monomeric catechins in baking chocolate standard reference material by LC/APCI-MS. J Agric Food Chem 51, 531537.
30Hurst, W, Stanley, B, Glinski, J, et al. (2009) Characterization of primary standards for use in the HPLC analysis of the procyanidin content of cocoa and chocolate containing products. Molecules 14, 41364146.
31Robbins, RJ, Leonczak, J, Johnson, JC, et al. (2009) Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples. J Chroma A 1216, 48314840.
32Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Health and Nutrition Examination Survey Data & Hyattsville MUSDoH (1994) Plan and operation of the Third National Health and Nutrition Examination Survey, 1988–94. Series 1: programs and collection procedures. Vital Health Stat 1, 1407.
33Baba, S, Osakabe, N, Yasuda, A, et al. (2000) Bioavailability of ( − )-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic Res 33, 635641.
34Celermajer, DS, Sorensen, KE, Gooch, VM, et al. (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340, 11111115.
35West, SG, Wagner, P, Schoemer, SL, et al. (2004) Biological correlates of day-to-day variation in flow-mediated dilation in individuals with type 2 diabetes: a study of test–retest reliability. Diabetologia 47, 16251631.
36West, SG, Hecker, KD, Mustad, VA, et al. (2005) Acute effects of monounsaturated fatty acids with and without omega-3 fatty acids on vascular reactivity in individuals with type 2 diabetes. Diabetologia 48, 113122.
37Bonetti, PO, Pumper, GM, Higano, ST, et al. (2004) Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol 44, 21372141.
38McCrea, CE, Skulas-Ray, AC, Chow, M, et al. (2012) Test–retest reliability of pulse amplitude tonometry measures of vascular endothelial function: implications for clinical trial design. Vasc Med 17, 2936.
39Rubinshtein, R, Kuvin, JT, Soffler, M, et al. (2010) Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J 31, 11421148.
40Hamburg, N, Keyes, M & Larson, M (2008) Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation 117, 24672474.
41Hamburg, NM & Benjamin, EJ (2009) Assessment of endothelial function using digital pulse amplitude tonometry. Trends Cardiovasc Med 19, 611.
42Wilkinson, IB, MacCallum, H, Flint, L, et al. (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525, 263270.
43Persson, IA, Persson, K, Hagg, S, et al. (2011) Effects of cocoa extract and dark chocolate on angiotensin-converting enzyme and nitric oxide in human endothelial cells and healthy volunteers – a nutrigenomics perspective. J Cardiovasc Pharmacol 57, 4450.
44Morgan, C & Lazarow, A (1963) Immunoassay of insulin: two antibody system. Plasma insulin levels in normal, subdiabetic, and diabetic rats. Diabetes 12, 115126.
45Bonora, E, Formentini, G, Calcaterra, F, et al. (2002) HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care 25, 11351141.
46Hooper, L, Kroon, PA, Rimm, EB, et al. (2008) Flavonoids, flavonoid rich foods, and cardiovascular risk: a meta analysis of randomized trials. Am J Clin Nutr 88, 3850.
47Karim, M, McCormick, K & Kappagoda, CT (2000) Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130, 2105S2108S.
48Schnorr, O, Brossette, T, Momma, TY, et al. (2008) Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch Biochem Biophys 476, 211215.
49Ottaviani, JI, Momma, TY, Heiss, C, et al. (2011) The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic Biol Med 50, 237244.
50Loke, WM, Hodgson, JM, Proudfoot, JM, et al. (2008) Pure dietary flavonoids quercetin and ( − )-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88, 10181025.
51Heiss, C, Kleinbongard, P, Dejam, A, et al. (2005) Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol 46, 12761283.
52Fisher, ND & Hollenberg, NK (2006) Aging and vascular responses to flavanol-rich cocoa. J Hypertens 24, 15751580.
53Crews, WD Jr, Harrison, DW & Wright, JW (2008) A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health: clinical findings from a sample of healthy, cognitively intact older adults. Am J Clin Nutr 87, 872880.
54Ried, K, Sullivan, T, Fakler, P, et al. (2010) Does chocolate reduce blood pressure? A meta-analysis. BMC Med 8, 39.
55Grassi, D, Necozione, S, Lippi, C, et al. (2005) Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 46, 398405.
56Grassi, D, Desideri, G, Necozione, S, et al. (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 138, 16711676.
57Berry, NM, Davison, K, Coates, AM, et al. (2010) Impact of cocoa flavanol consumption on blood pressure responsivenes to exercise. Br J Nutr 103, 14801484.
58Gosmanov, AR, Smiley, DD, Robalino, G, et al. (2010) Effects of oral and intravenous fat load on blood pressure, endothelial function, sympathetic activity, and oxidative stress in obese healthy subjects. Am J Phys Endocrinol Metab 299, E953E958.
59Hooper, L, Kay, C, Abdelhamid, A, et al. (2012) Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 95, 740751.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed