Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T02:14:42.959Z Has data issue: false hasContentIssue false

Effects of dietary polyunsaturated fatty acids on the composition of the individual lipids of turkey breast and leg muscle

Published online by Cambridge University Press:  09 March 2007

T. S. Neudoerffer
Affiliation:
Agricultural Research Council, Food Research Institute, Low Temperature Research Station, Cambridge
C. H. Lea
Affiliation:
Agricultural Research Council, Food Research Institute, Low Temperature Research Station, Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Groups of turkeys were given, to 10 weeks of age: diets E, basal, containing 2.3% mainly cereal lipid; A, basal plus 2.5% beef fat; B, basal plus 2.5% anchovy oil; C, as B, plus 0.02% ethoxyquin; D, basal plus 5% anchovy oil. Lipids from breast and leg muscle of all five groups were fractionated by thin-layer chromatography into five ‘neutral’ and six phospholipid fractions and the fatty-acid composition of each was determined by gas–liquid chromatography.

2. Individual lipid fractions differed widely in fatty-acid composition and in the degree to which they could be influenced by dietary fat supplements. Small but usually consistent differences were observed between corresponding fractions from breast and leg. Sphingomyelin (SP) and lysophosphatidylcholine contained largely saturated acids (76–80%); the other phospholipids were 44–48% and the ‘neutral’ lipids 38–50% saturated. Phosphatidylserine (PS), phosphatidylinositol(PI) and, in less degree, phosphatidylethanolamine (PE) were rich in stearic acid, though palmitic was much more abundant in the diets and in the other muscle lipids. SP contained no acid more unsaturatedthan linoleic (1–2%). PE and PI were richest in arachidonic and PE and PI in other polyene acids.

3. The effects of beef fat on the muscle lipids were small and mainly on the ‘neutral’ fractions.

4. The polyunsaturated fatty acids of the fish oil extensively displaced linoleic (and oleic) acids from all fractions (except SP); arachidonic acid was displaced from PE but not from PI.

5. The degree to which the fish-oil polyunsaturated acids of the three series entered the muscle lipids varied with the acid and with the fraction. Docosahexaenoic acid (22:6) reached a concentration of 20–25% in PE, nearly five times as great as its concentration in the dietary lipid.

6. Hydrolysis with phospholipase A showed that most of the unsaturated fatty acids were present in the 2-position of PC and PE, but the positional specificity was not complete, particularly for the less highly unsaturated acids.

7. The antioxidant ethoxyquin had no effect on the fatty-acid composition of any of the muscle lipid fractions.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Bowyer, D. E., Leat, W. M. F., Howard, A. N. & Gresham, G. A. (1963). Biochim. biophys. Acta 70, 423.CrossRefGoogle Scholar
Dam, H. & Søndergaard, E. (1964). Z. Ernähr. Wiss. 5, 73.Google Scholar
Fry, J. L., van Walleghem, P., Waldroup, P. W. & Harms, R. H. (1965). Poult. Sci. 44, 1016.CrossRefGoogle Scholar
Garcia, P. T. & Holman, R. T. (1965). J. Am. Oil Chem. Soc. 42, 1137.CrossRefGoogle Scholar
Hardin, J. O., Milligan, J. L. & Sidwell, V. D. (1964). Poult. Sci. 43, 858.Google Scholar
Hill, E. G. (1966). J. Nutr. 89, 465.CrossRefGoogle Scholar
Keenan, R. W. & Hokin, L. E. (1964). Biochim. biophys. Acta 84, 485.Google Scholar
Kerr, S. E. & Read, W. W. C. (1963). Biochim biophys. Acta 70, 477.Google Scholar
Lea, C. H. (1956). In Biochemical Problems of Lipids, p. 81. [Popjak, G. and LeBreton, E., editors.] London: Butterworth.Google Scholar
Lea, C. H., Parr, L. J., L'Estrange, J. L. & Carpenter, K. J. (1966). Br. J. Nutr. 20, 123.CrossRefGoogle Scholar
Lees, A. M. & Korn, E. D. (1966). Biochemistry 5, 1475.CrossRefGoogle Scholar
Leveille, G. A. & Sauberlich, H. E. (1963). Proc. Soc. exp. Biol. Med. 112, 300.CrossRefGoogle Scholar
Leveille, G. A. & Sauberlich, H. E. (1964). Proc. Soc. exp. Biol. Med. 117, 653.CrossRefGoogle Scholar
Lundberg, W. O. (1965). Chemy Ind. p. 572.Google Scholar
MacHlin, L. J. & Gordon, R. S. (1961). J. Nutr. 75, 157.CrossRefGoogle Scholar
Malins, D. C. & Mangold, H. K. (1960). J. Am. Oil Chem. Soc. 37, 576.CrossRefGoogle Scholar
Marion, J. E. (1965). J. Nutr. 85, 38.Google Scholar
Marion, J. E. & Woodroof, J. G. (1963). Poult. Sci. 42, 1202.Google Scholar
Marion, J. E. & Woodroof, J. G. (1965). J. Fd Sci. 30, 38.Google Scholar
Marion, J. E. & Woodroof, J. G. (1966). Poult. Sci. 45, 241.Google Scholar
McKibbins, S. W., Harris, J. F. & Saeman, J. F. (1961). J. Chromat. 5, 207.Google Scholar
Menzel, D. B. & Olcott, H. S. (1964). Biochim. biophys. Acta 84, 133.Google Scholar
Mickelberry, W. C., Rogler, J. C. & Stadelman, W. J. (1966). Poult. Sci. 45, 313.CrossRefGoogle Scholar
Miller, D., Leong, K. C., Knobl, G. M. Jr & Gruger, E. H. Jr (1964). Proc. Soc. exp. Biol. Med. 116, 1147.Google Scholar
Miller, D., Leong, K. C., Knobl, G. M. Jr & Gruger, E. H. Jr (1965). Poult. Sci. 44, 1072.Google Scholar
Mohrhauer, H. & Holman, R. T. (1963). J. Nutr. 81, 67.CrossRefGoogle Scholar
Neudoerffer, T. S. & Lea, C. H. (1966 a). Br. J. Nutr. 20, 581.Google Scholar
Neudoerffer, T. S. & Lea, C. H. (1966 b). J. Chromat. 21, 138.CrossRefGoogle Scholar
O'Brien, J. S., Fillerup, D. L. & Mead, J. F. (1964). J. Lipid Res. 5, 329.CrossRefGoogle Scholar
Parker, F. & Peterson, N. F. (1965). J. Lipid Res. 6, 455.Google Scholar
Peng, C. Y. & Dugan, L. R. Jr (1965). J. Am. Oil Chem. Soc. 42, 533.CrossRefGoogle Scholar
Rapport, M. M. & Franzl, R. E. (1957). J. biol. Chem. 225, 851.CrossRefGoogle Scholar
Rothfield, L. & Pearlman, M. (1966). J. biol. Chem. 241, 1386.Google Scholar
Sgoutas, D. (1966). Can. J. Biochem. Physiol. 44, 763.Google Scholar
Shapiro, I. L. & Kritchevsky, D. (1965). J. Chromat. 18, 599.CrossRefGoogle Scholar
Skipski, V. P., Peterson, R. F. & Barclay, M. (1962). J. Lipid Res. 3, 467.Google Scholar
Skipski, V. P., Peterson, R. F. & Barclay, M. (1964). Biochem. J. 90, 374.Google Scholar
Van Deenen, L. L. M. (1966). J. Am. Oil Chem. Soc. 43, 296.CrossRefGoogle Scholar
Van Deenen, L. L. M. & de Haas, G. H. (1966). A. Rev. Biochem. 35, (1), 157.Google Scholar
Verdino, B., Blank, M. L., Privett, O. S. & Lundberg, W. O. (1964). J. Nutr. 83, 234.Google Scholar
Walker, B. L. & Kummerow, F. A. (1963). J. Nutr. 81, 75.Google Scholar
Winter, E. (1963). Z. Lebensmittelunters. u. -Forsch. 123, 205.Google Scholar