Skip to main content Accessibility help

Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men

  • Nor M. F. Farah (a1) (a2) and Jason M. R. Gill (a1)


It is unclear how timing of exercise relative to meal ingestion influences substrate balance and metabolic responses. The present study aimed to compare the effects of exercise performed before or after breakfast on fat balance and postprandial metabolism. A total of ten sedentary overweight men (aged 28·1 (sem 10·7) years, BMI 29·0 (sem 2·8) kg/m2) underwent three trials in random order involving: (1) performing no exercise (CON), or walking for 60 min at 50 % maximal O2 uptake either (2) before (Ex-Meal) or (3) after (Meal-Ex) consuming a standardised breakfast meal. In each trial an ad libitum lunch was provided 3·5 h after breakfast. Substrate utilisation was assessed by indirect calorimetry and blood was taken at regular intervals over an 8·5 h observation period. At the end of the observation period, fat balances in the Ex-Meal ( − 1043 (sem 270) kJ) and Meal-Ex ( − 697 (sem 201) kJ) trials were both significantly lower than CON (204 (sem 165) kJ) and fat balance in the Ex-Meal trial was significantly lower than in the Meal-Ex trial (all P <0·0001). Compared with the CON trial, the 8·5 h postprandial TAG response was only significantly lowered in the Ex-Meal trial ( − 17 %, P =0·025) and not in the Meal-Ex trial ( − 11 %, P =0·20). Both the Ex-Meal and Meal-Ex trials showed significantly lowered insulin responses relative to the CON trial (by 19 and 24 %, respectively, P <0·01 for both). There were no differences in lunch energy intake between trials. The present findings suggest that there may be an advantage for body fat regulation and lipid metabolism in exercising before compared with after breakfast. However, further study is needed to determine whether the present findings extend over the long term under free-living conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men
      Available formats


Corresponding author

*Corresponding author: Dr J. M. R. Gill, fax +44 141 3302522, email


Hide All
1Schutz, Y (2004) Dietary fat, lipogenesis and energy balance. Physiol Behav 83, 557564.
2Hansen, K, Shriver, T & Schoeller, D (2005) The effects of exercise on the storage and oxidation of dietary fat. Sports Med 35, 363373.
3Jokisch, E, Coletta, A & Raynor, HA (2012) Acute energy compensation and macronutrient intake following exercise in active and inactive males who are normal weight. Appetite 58, 722729.
4Burton, FL, Malkova, D, Caslake, MJ, et al. (2010) Substrate metabolism, appetite and feeding behaviour under low and high energy turnover conditions in overweight women. Br J Nutr 104, 12491259.
5Farah, NM, Malkova, D & Gill, JM (2010) Effects of exercise on postprandial responses to ad libitum feeding in overweight men. Med Sci Sports Exerc 42, 20152022.
6Wu, CL, Nicholas, C, Williams, C, et al. (2003) The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. Br J Nutr 90, 10491056.
7Horowitz, JF, Mora-Rodriguez, R, Byerley, LO, et al. (1997) Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol 273, E768E775.
8Dionne, I, Van, VS & Tremblay, A (1999) Postexercise macronutrient oxidation: a factor dependent on postexercise macronutrient intake. Am J Clin Nutr 69, 927930.
9Schneiter, P, Di Vetta, V, Jéquier, E, et al. (1995) Effect of physical exercise on glycogen turnover and net substrate utilization according to the nutritional state. Am J Physiol 269, E1031E1036.
10Bennard, P & Doucet, E (2006) Acute effects of exercise timing and breakfast meal glycemic index on exercise-induced fat oxidation. Appl Physiol Nutr Metab 31, 502511.
11Malkova, D & Gill, JMR (2006) Effects of exercise on postprandial lipoprotein metabolism. Future Lipidol 1, 743755.
12Cohn, JS (1998) Postprandial lipemia: emerging evidence for atherogenicity of remnant lipoproteins. Can J Cardiol 14, 18B27B.
13Frayn, KN (2002) Insulin resistance, impaired postprandial lipid metabolism and abdominal obesity. A deadly triad. Med Princ Pract 11, Suppl. 2, 3140.
14Burton, FL, Malkova, D, Caslake, MJ, et al. (2008) Energy replacement attenuates the effects of prior moderate exercise on postprandial metabolism in overweight/obese men. Int J Obes (Lond) 32, 481489.
15Gill, JMR, Al-Mamari, A, Ferrell, WR, et al. (2004) Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. J Am Coll Cardiol 44, 23752382.
16Kolifa, M, Petridou, A & Mougios, V (2004) Effect of prior exercise on lipemia after a meal of moderate fat content. Eur J Clin Nutr 58, 13271335.
17Miyashita, M, Burns, SF & Stensel, DJ (2008) Accumulating short bouts of brisk walking reduces postprandial plasma triacylglycerol concentrations and resting blood pressure in healthy young men. Am J Clin Nutr 88, 12251231.
18Katsanos, CS & Moffatt, RJ (2004) Acute effects of premeal versus postmeal exercise on postprandial hypertriglyceridemia. Clin J Sport Med 14, 3339.
19Zhang, JQ, Thomas, TR & Ball, SD (1998) Effect of exercise timing on postprandial lipemia and HDL cholesterol subfractions. J Appl Physiol 85, 15161522.
20Hardman, AE & Aldred, HE (1995) Walking during the postprandial period decreases alimentary lipaemia. J Cardiovasc Risk 2, 7178.
21Schlierf, G, Dinsenbacher, A, Kather, H, et al. (1987) Mitigation of alimentary lipemia by postprandial exercise – phenomena and mechanisms. Metabolism 36, 726730.
22Klein, L, Miller, TD, Radam, TE, et al. (1992) Acute physical exercise alters apolipoprotein E and C-III concentrations of apo E-rich very low density lipoprotein fraction. Atherosclerosis 97, 3751.
23Welle, S (1984) Metabolic responses to a meal during rest and low-intensity exercise. Am J Clin Nutr 40, 990994.
24Harrison, M, O'Gorman, DJ, McCaffrey, N, et al. (2009) Influence of acute exercise with and without carbohydrate replacement on postprandial lipid metabolism. J Appl Physiol 106, 943949.
25Newsom, SA, Schenk, S, Thomas, KM, et al. (2010) Energy deficit after exercise augments lipid mobilization but does not contribute to the exercise-induced increase in insulin sensitivity. J Appl Physiol 108, 554560.
26Stunkard, AJ & Messick, S (1985) The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 29, 7183.
27Van Strien, T, Frijters, JER, Bergers, APA, et al. (1986) Dutch eating behavior questionnaire for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord 5, 315.
28Frayn, KN & Macdonald, IA (1997) Assessment of substrate and energy metabolism in vivo. In Clinical Research in Diabetes and Obesity Part I: Methods, Assessment, and Metabolic Regulation, pp. 101124 [Draznin, B and Rizza, R, editors]. Totowa, NJ: Humana Press.
29Flint, A, Raben, A, Blundell, JE, et al. (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24, 3848.
30Department for Environment FaRA (2004) Estimates of Food Consumption and Energy and Nutrition Intakes in the UK in 2002–2003. London: HMSO.
31Herman, CP & Polivy, J (2005) Normative influences on food intake. Physiol Behav 86, 762772.
32Gill, JM, Malkova, D & Hardman, AE (2005) Reproducibility of an oral fat tolerance test is influenced by phase of menstrual cycle. Horm Metab Res 37, 336341.
33Tsintzas, K & Williams, C (1998) Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med 25, 723.
34Coyle, EF, Coggan, AR, Hemmert, MK, et al. (1985) Substrate usage during prolonged exercise following a preexercise meal. J Appl Physiol 59, 429433.
35Kiens, B & Richter, EA (1998) Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am J Physiol 275, E332E337.
36Charlot, K, Pichon, A & Chapelot, D (2011) Exercise prior to a freely requested meal modifies pre and postprandial glucose profile, substrate oxidation and sympathovagal balance. Nutr Metab (Lond) 8, 66.
37FAO/WHO/UNU (1985)Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation no. 724. Geneva: WHO.
38Deighton, K, Zahra, JC & Stensel, DJ (2012) Appetite, energy intake and resting metabolic responses to 60 min treadmill running performed in a fasted versus a postprandial state. Appetite 58, 946954.
39Cheng, MH, Bushnell, D, Cannon, DT, et al. (2009) Appetite regulation via exercise prior or subsequent to high-fat meal consumption. Appetite 52, 193198.
40Borer, KT, Wuorinen, E, Chao, C, et al. (2005) Exercise energy expenditure is not consciously detected due to oro-gastric, not metabolic, basis of hunger sensation. Appetite 45, 177181.
41Hopkins, M, King, NA & Blundell, JE (2010) Acute and long-term effects of exercise on appetite control: is there any benefit for weight control? Curr Opin Clin Nutr Metab Care 13, 635640.
42King, JA, Wasse, LK, Ewens, J, et al. (2011) Differential acylated ghrelin, peptide YY3-36, appetite, and food intake responses to equivalent energy deficits created by exercise and food restriction. J Clin Endocrinol Metab 96, 11141121.
43King, NA, Hopkins, M, Caudwell, P, et al. (2008) Individual variability following 12 weeks of supervised exercise: identification and characterization of compensation for exercise-induced weight loss. Int J Obes (Lond) 32, 177184.
44Turner, JE, Markovitch, D, Betts, JA, et al. (2010) Nonprescribed physical activity energy expenditure is maintained with structured exercise and implicates a compensatory increase in energy intake. Am J Clin Nutr 92, 10091016.
45Barwell, ND, Malkova, D, Leggate, M, et al. (2009) Individual responsiveness to exercise-induced fat loss is associated with change in resting substrate utilization. Metabolism 58, 13201328.
46Manthou, E, Gill, JM, Wright, A, et al. (2010) Behavioral compensatory adjustments to exercise training in overweight women. Med Sci Sports Exerc 42, 11211128.
47Peddie, MC, Rehrer, NJ & Perry, TL (2012) Physical activity and postprandial lipidemia: are energy expenditure and lipoprotein lipase activity the real modulators of the positive effect? Prog Lipid Res 51, 1122.
48Gabriel, B, Ratkevicius, A, Gray, P, et al. (2012) High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress. Clin Sci (Lond) 123, 313321.
49Kiens, B, Lithell, H, Mikines, KJ, et al. (1989) Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J Clin Invest 84, 11241129.
50Herd, SL, Kiens, B, Boobis, LH, et al. (2001) Moderate exercise, postprandial lipemia and skeletal muscle lipoprotein lipase activity. Metabolism 50, 756762.
51Ferguson, MA, Alderson, NL, Trost, SG, et al. (1998) Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85, 11691174.
52Al-Shayji, IA, Caslake, MJ & Gill, JM (2012) Effects of moderate exercise on VLDL1 and intralipid kinetics in overweight/obese middle-aged men. Am J Physiol Endocrinol Metab 302, E349E355.
53Gill, JMR, Herd, SL, Tsetsonis, NV, et al. (2002) Are the reductions in triglyceride and insulin levels after exercise related? Clin Sci 102, 223231.
54Holtz, KA, Stephens, BR, Sharoff, CG, et al. (2008) The effect of carbohydrate availability following exercise on whole-body insulin action. Appl Physiol Nutr Metab 33, 946956.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed