Skip to main content
×
×
Home

Effects of low-fat dairy consumption on markers of low-grade systemic inflammation and endothelial function in overweight and obese subjects: an intervention study

  • Leonie E. C. van Meijl (a1) and Ronald P. Mensink (a1)
Abstract

Although increased concentrations of plasma inflammatory markers are not one of the criteria to diagnose the metabolic syndrome, low-grade systemic inflammation is receiving large attention as a metabolic syndrome component and cardiovascular risk factor. As several epidemiological studies have suggested a negative relationship between low-fat dairy consumption and the metabolic syndrome, we decided to investigate the effects of low-fat dairy consumption on inflammatory markers and adhesion molecules in overweight and obese subjects in an intervention study. Thirty-five healthy subjects (BMI>27 kg/m2) consumed, in a random order, low-fat dairy products (500 ml low-fat milk and 150 g low-fat yogurt) or carbohydrate-rich control products (600 ml fruit juice and three fruit biscuits) daily for 8 weeks. Plasma concentrations of TNF-α were decreased by 0·16 (sd 0·50) pg/ml (P = 0·070), and soluble TNF-α receptor-1 (s-TNFR-1) was increased by 110·0 (sd 338·4) pg/ml (P = 0·062) after the low-fat dairy period than after the control period. s-TNFR-2 was increased by 227·0 (sd 449·0) pg/ml (P = 0·020) by the dairy intervention. As a result, the TNF-α index, defined as the TNF-α:s-TNFR-2 ratio, was decreased by 0·000053 (sd 0·00 012) (P = 0·015) after the dairy diet consumption. Low-fat dairy consumption had no effect on IL-6, monocyte chemoattractant protein-1, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 concentrations. The present results indicate that in overweight and obese subjects, low-fat dairy consumption for 8 weeks may increase concentrations of s-TNFR compared with carbohydrate-rich product consumption, but that it has no effects on other markers of chronic inflammation and endothelial function.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of low-fat dairy consumption on markers of low-grade systemic inflammation and endothelial function in overweight and obese subjects: an intervention study
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of low-fat dairy consumption on markers of low-grade systemic inflammation and endothelial function in overweight and obese subjects: an intervention study
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of low-fat dairy consumption on markers of low-grade systemic inflammation and endothelial function in overweight and obese subjects: an intervention study
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: L. E. C. van Meijl, fax +31 43 367 09 76, email l.vanmeijl@hb.unimaas.nl
References
Hide All
1Grundy, SM, Brewer, HB Jr, Cleeman, JI, et al. (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109, 433438.
2Tamakoshi, K, Yatsuya, H, Kondo, T, et al. (2003) The metabolic syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state. Int J Obes Relat Metab Disord 27, 443449.
3Pickup, JC, Mattock, MB, Chusney, GD, et al. (1997) NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40, 12861292.
4Hotamisligil, GS, Arner, P, Caro, JF, et al. (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95, 24092415.
5Ford, ES (2003) The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis 168, 351358.
6Azadbakht, L, Mirmiran, P, Esmaillzadeh, A, et al. (2005) Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr 82, 523530.
7Beydoun, MA, Gary, TL, Caballero, BH, et al. (2008) Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr 87, 19141925.
8Elwood, PC, Pickering, JE & Fehily, AM (2007) Milk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. J Epidemiol Community Health 61, 695698.
9Lutsey, PL, Steffen, LM & Stevens, J (2008) Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 117, 754761.
10Mennen, LI, Lafay, L, Feskens, EJM, et al. (2000) Possible protective effect of bread and dairy products on the risk of the metabolic syndrome. Nutr Res 20, 335347.
11Pereira, MA, Jacobs, DR Jr, Van Horn, L, et al. (2002) Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 287, 20812089.
12Ruidavets, JB, Bongard, V, Dallongeville, J, et al. (2007) High consumptions of grain, fish, dairy products and combinations of these are associated with a low prevalence of metabolic syndrome. J Epidemiol Community Health 61, 810817.
13Zemel, MB & Sun, X (2008) Dietary calcium and dairy products modulate oxidative and inflammatory stress in mice and humans. J Nutr 138, 10471052.
14van Meijl, LE & Mensink, RP (2010) Low-fat dairy consumption reduces systolic blood pressure, but does not improve other metabolic risk parameters in overweight and obese subjects. Nutr Metab Cardiovasc Dis (Epublication ahead of print version 11 February 2010).
15Plat, J & Mensink, RP (2000) Vegetable oil based versus wood based stanol ester mixtures: effects on serum lipids and hemostatic factors in non-hypercholesterolemic subjects. Atherosclerosis 148, 101112.
16Barash, J, Dushnitzki, D, Barak, Y, et al. (2003) Tumor necrosis factor (TNF)alpha and its soluble receptor (sTNFR) p75 during acute human parvovirus B19 infection in children. Immunol Lett 88, 109112.
17Zemel, MB (2003) Mechanisms of dairy modulation of adiposity. J Nutr 133, 252S256S.
18Pocock, SJ (1983) Clinical Trials. A Practical Approach. Hoboken, NJ: John Wiley & Sons.
19Eckel, RH, Grundy, SM & Zimmet, PZ (2005) The metabolic syndrome. Lancet 365, 14151428.
20Fernandez-Real, JM & Ricart, W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24, 278301.
21Hotamisligil, GS, Shargill, NS & Spiegelman, BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 8791.
22Uysal, KT, Wiesbrock, SM, Marino, MW, et al. (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610614.
23Plomgaard, P, Bouzakri, K, Krogh-Madsen, R, et al. (2005) Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54, 29392945.
24Gonzalez-Gay, MA, De Matias, JM, Gonzalez-Juanatey, C, et al. (2006) Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol 24, 8386.
25Kiortsis, DN, Mavridis, AK, Vasakos, S, et al. (2005) Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis 64, 765766.
26Tam, LS, Tomlinson, B, Chu, TT, et al. (2007) Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis. Clin Rheumatol 26, 14951498.
27Bernstein, LE, Berry, J, Kim, S, et al. (2006) Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med 166, 902908.
28Dominguez, H, Storgaard, H, Rask-Madsen, C, et al. (2005) Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res 42, 517525.
29Paquot, N, Castillo, MJ, Lefebvre, PJ, et al. (2000) No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab 85, 13161319.
30Fernandez-Real, JM, Broch, M, Ricart, W, et al. (1998) Plasma levels of the soluble fraction of tumor necrosis factor receptor 2 and insulin resistance. Diabetes 47, 17571762.
31Moon, YS, Kim, DH & Song, DK (2004) Serum tumor necrosis factor-alpha levels and components of the metabolic syndrome in obese adolescents. Metabolism 53, 863867.
32Zahorska-Markiewicz, B, Olszanecka-Glinianowicz, M, Janowska, J, et al. (2008) The effect of weight loss on serum concentrations of FAS and tumour necrosis factor alpha in obese women. Endokrynol Pol 59, 1822.
33Warzocha, K & Salles, G (1998) The tumor necrosis factor signaling complex: choosing a path toward cell death or cell proliferation. Leuk Lymphoma 29, 8192.
34Aderka, D, Englemann, H, Hornik, V, et al. (1991) Increased serum levels of soluble receptors for tumor necrosis factor in cancer patients. Cancer Res 51, 56025607.
35Van Zee, KJ, Kohno, T, Fischer, E, et al. (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci U S A 89, 48454849.
36Zhu, Y, Mahon, BD, Froicu, M, et al. (2005) Calcium and 1 alpha,25-dihydroxyvitamin D3 target the TNF-alpha pathway to suppress experimental inflammatory bowel disease. Eur J Immunol 35, 217224.
37Tomsig, JL, Sohma, H & Creutz, CE (2004) Calcium-dependent regulation of tumour necrosis factor-alpha receptor signalling by copine. Biochem J 378, 10891094.
38Wennersberg, MH, Smedman, A, Turpeinen, AM, et al. (2009) Dairy products and metabolic effects in overweight men and women: results from a 6-mo intervention study. Am J Clin Nutr 90, 960968.
39Sun, X & Zemel, MB (2007) Calcium and 1,25-dihydroxyvitamin D3 regulation of adipokine expression. Obesity (Silver Spring) 15, 340348.
40Sun, X & Zemel, MB (2008) Calcitriol and calcium regulate cytokine production and adipocyte-macrophage cross-talk. J Nutr Biochem 19, 392399.
41Ardizzone, S, Cassinotti, A, Trabattoni, D, et al. (2009) Immunomodulatory effects of 1,25-dihydroxyvitamin D3 on TH1/TH2 cytokines in inflammatory bowel disease: an in vitro study. Int J Immunopathol Pharmacol 22, 6371.
42Prabhu Anand, S, Selvaraj, P & Narayanan, PR (2009) Effect of 1,25 dihydroxyvitamin D3 on intracellular IFN-gamma and TNF-alpha positive T cell subsets in pulmonary tuberculosis. Cytokine 45, 105110.
43Tang, J, Zhou, R, Luger, D, et al. (2009) Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J Immunol 182, 46244632.
44Zemel, MB, Sun, X, Sobhani, T, et al. (2010) Effects of dairy compared with soy on oxidative and inflammatory stress in overweight and obese subjects. Am J Clin Nutr 91, 1622.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 43
Total number of PDF views: 278 *
Loading metrics...

Abstract views

Total abstract views: 1014 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th July 2018. This data will be updated every 24 hours.