Skip to main content Accessibility help
×
×
Home

The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa ( − )-epicatechin metabolites in healthy human subjects

  • Elena Roura (a1), Cristina Andrés-Lacueva (a1), Ramon Estruch (a2) (a3), M. Lourdes Mata Bilbao (a1), Maria Izquierdo-Pulido (a1) and Rosa M. Lamuela-Raventós (a1)...
Abstract

The effect of different food matrices on the metabolism and excretion of polyphenols is uncertain. The objective of the study was to evaluate the possible effect of milk on the excretion of ( − )-epicatechin metabolites from cocoa powder after its ingestion with and without milk. Twenty-one volunteers received the following three test meals each in a randomised cross–over design with a 1-week interval between meals: (1) 250 ml whole milk as a control; (2) 40 g cocoa powder dissolved in 250 ml whole milk (CC–M); (3) 40 g cocoa powder dissolved in 250 ml water (CC–W). Urine was collected before consumption and during the 0–6, 6–12 and 12–24 h periods after consumption. ( − )-Epicatechin metabolite excretion was measured using liquid chromatography–MS. One ( − )-epicatechin glucuronide and three ( − )-epicatechin sulfates were detected in urine excreted after the intake of the two cocoa beverages (CC–M and CC–W). The results show that milk does not significantly affect the total amount of metabolites excreted in urine. However, differences in metabolite excretion profiles were observed; there were changes in the glucuronide and sulfate excretion rates, and the sulfation position between the period of excretion and the matrix. The matrix in which polyphenols are consumed can affect their metabolism and excretion, and this may affect their biological activity. Thus, more studies are needed to evaluate the effect of these different metabolite profiles on the body.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa ( − )-epicatechin metabolites in healthy human subjects
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa ( − )-epicatechin metabolites in healthy human subjects
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa ( − )-epicatechin metabolites in healthy human subjects
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Rosa M. Lamuela Raventós, fax +34 93 403 59 31, email lamuela@ub.edu
References
Hide All
1Dorne, JL, Walton, K & Renwick, AG (2001) Human variability in glucuronidation in relation to uncertainty factors for risk assessment. Food Chem Toxicol 39, 11531173.
2Silberberg, M, Morand, C, Manach, C, Scalbert, A & Remesy, C (2005) Co-administration of quercetin and catechin in rats alters their absorption but not their metabolism. Life Sci 77, 31563167.
3Terao, J (1999) Dietary flavonoids as antioxidants in vivo: conjugated metabolites of ( − )-epicatechin and quercetin participate in antioxidative defense in blood plasma. J Med Invest 46, 159168.
4Lesser, S, Cermak, R & Wolffram, S (2004) Bioavailability of quercetin in pigs is influenced by the dietary fat content. J Nutr 134, 15081511.
5Visioli, F, Galli, C, Grande, S, Colonnelli, K, Patelli, C, Galli, G & Caruso, D (2003) Hydroxytyrosol excretion differs between rats and human and depends on the vehicle of administration. J Nutr 133, 26122615.
6Azuma, K, Ippoushi, K, Ito, H, Higashio, H & Terao, J (2002) Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J Agric Food Chem 50, 17061712.
7Yamashita, S, Sakane, T, Harada, M, Sugiura, N, Koda, H, Kiso, Y & Sezaki, H (2002) Absorption and metabolism of antioxidative polyphenolic compounds in red wine. Ann N Y Acad Sci 957, 325328.
8Serafini, M, Ghiselli, A & Ferro-Luzzi, A (1996) In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 50, 2832.
9Serafini, M, Bugianesi, R, Maiani, G, Valtuena, S, De Santis, S & Crozier, A (2003) Plasma antioxidants from chocolate. Nature 424, 1013.
10Goldberg, DM, Yan, J & Soleas, G (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36, 7987.
11Manach, C, Scalbert, A, Morand, C, Rémésy, C & Jiménez, L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.
12Manach, C & Donovan, JL (2004) Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 38, 771785.
13Zamek-Gliszczynski, MJ, Hoffmaster, KA, Nezasa, K, Tallman, MN & Brouwer, LR (2006) Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 27, 447486.
14Chan, W, Cui, L, Xu, G & Cai, Z (2006) Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20, 17551760.
15Miners, JO & Mackenzie, PI (1991) Drug glucuronidation in humans. Pharmac Ther 51, 347369.
16Spencer, JP, Chowrimootoo, G, Choudhury, R, Debnam, ES, Srai, SK & Rice-Evans, C (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458, 224230.
17Critchley, JA, Critchley, LAH, Anderson, PJ & Tomlinson, B (2005) Differences in the single oral dose pharmacokinetics and urinary excretion of paracetamol and its conjugates between Hong Kong Chinese and Caucasian subjects. J Clin Pharm Ther 30, 179184.
18Roura, E, Andres-Lacueva, C, Estruch, R, Mata-Bilbao, L, Waterhause, AL & Lamuela-Raventos, RM (2007) Milk does not affect the bioavailability of cocoa powder flavonoid in healthy humans. Ann Nutr Metab 51, 493498.
19Roura, E, Andres-Lacueva, C, Jauregui, O, Badia, E, Estruch, R, Izquierdo-Pulido, M & Lamuela-Raventos, RM (2005) Rapid liquid chromatography tandem mass spectrometry assay to quantify plasma ( − )-epicatechin metabolites after ingestion of a standard portion of cocoa beverage in humans. J Agric Food Chem 53, 61906194.
20Roura, E, Andres-Lacueva, C, Estruch, R & Lamuela-Raventos, RM (2006) Total polyphenol intake estimated by a modified Folin–Ciocalteu assay of urine. Clin Chem 52, 749752.
21Donovan, JL, Kasim-Karakas, S, German, JB & Waterhouse, AL (2002) Urinary excretion of catechin metabolites by human subjects after red wine consumption. Br J Nutr 87, 3137.
22Arts, MJ, Haenen, GR, Wilms, LC, Beetstra, SA, Heijnen, CG, Voss, HP & Bast, AJ (2002) Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 50, 11841187.
23Schroeter, H, Holt, RR, Orozco, TJ, Schmitz, HH & Keen, CL (2003) Nutrition: milk and absorption of dietary flavanols. Nature 426, 787788.
24Yamamoto, N, Moon, JH, Tsushida, T, Nagao, A & Terao, J (1999) Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch Biochem Biophys 372, 347354.
25Natsume, M, Osakabe, N, Yasuda, A, Baba, S, Tokunaga, T, Kondo, K, Osawa, T & Terao, J (2004) In vitro antioxidative activity of ( − )-epicatechin glucuronide metabolites present in human and rat plasma. Free Rad Res 38, 13411348.
26Mullen, W, Edwards, CA & Crozier, A (2006) Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulfo-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr 96, 107116.
27O'Leary, KA, Day, AJ, Needs, PW, Mellon, FA, O'Brien, NM & Williamson, G (2003) Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol 65, 479491.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed