Skip to main content
×
×
Home

The effects of probiotic and conventional yoghurt on lipid profile in women

  • Haleh Sadrzadeh-Yeganeh (a1), Ibrahim Elmadfa (a2), Abolghasem Djazayery (a1), Mahmoud Jalali (a1), Ramin Heshmat (a3) and Maryam Chamary (a1)...
Abstract

Many studies have been done on the hypocholesterolaemic effect of probiotic yoghurt. The results, however, are not conclusive. The aim of the present study was to test the effect of probiotic and conventional yoghurt on the lipid profile in women. In a randomised trial, ninety female volunteers aged 19–49 years were assigned to three groups. Subjects consumed daily 300 g probiotic yoghurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 or 300 g conventional yoghurt or no yoghurt for 6 weeks. Fasting blood samples, 3 d dietary records and anthropometric measurements were collected at baseline (T1), end of week 3 (T2) and end of week 6 (T3). Lipid profile parameters were determined by enzymic methods. Results showed no significant difference in lipid profile within any group throughout the study. Comparing mean differences (T1 − T3) among the three groups showed: no difference in TAG and LDL-cholesterol, a decrease in cholesterol in both conventional (P < 0·05) and probiotic yoghurt groups (P < 0·005) compared with the control group, a decrease in total:HDL-cholesterol ratio for conventional (P < 0·05) and probiotic yoghurt groups (P < 0·001) compared with the control group, and an increase in HDL-cholesterol in the probiotic yoghurt group (P < 0·05) compared with the control group. Positive changes in lipid profile were observed in both yoghurt groups. Any added effect, therefore, is due to the consumption of fermented milk products.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effects of probiotic and conventional yoghurt on lipid profile in women
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effects of probiotic and conventional yoghurt on lipid profile in women
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effects of probiotic and conventional yoghurt on lipid profile in women
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Ibrahim Elmadfa, fax +43 1 4277 9549, email ibrahim.elmadfa@univie.ac.at
References
Hide All
1 Stamler, J & Neaton, JD (2008) The multiple risk factor intervention trial (MRFIT): importance then and now. JAMA 300, 13431345.
2 Imamura, T, Doi, Y, Arima, H, et al. (2009) LDL cholesterol and the development of stroke subtypes and coronary heart disease in a general Japanese population: The Hisayama study. Stroke 40, 350354.
3 Drisko, JA, Giles, CK & Bischoff, BJ (2003) Probiotics in health maintenance and disease prevention. Altern Med Rev 8, 143155.
4 Goldin, BR & Gorbach, SL (2008) Clinical indications for probiotics: an overview. Clin Infect Dis 46, Suppl. 2, S96S100.
5 Rautava, S & Isolauri, E (2003) Gut microbiota and the intestinal immune system in food allergy – targets for probiotic therapy. Food Allergy Intolerance 4, 531.
6 Shi, HN & Walker, A (2004) Bacterial colonization and the development of intestinal defences. Can J Gastroenterol 18, 493500.
7 Mann, GV & Spoerry, A (1974) Studies of a surfactant and cholesterolemia in the Maasai. Am J Clin Nutr 27, 464469.
8 Gilliland, SE, Nelson, CR & Maxwell, C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49, 377381.
9 Lin, MY & Chang, FJ (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest Dis Sci 45, 16171622.
10 Tahri, K, Grill, JP & Schneider, F (1996) Bifidobacteria strain behavior toward cholesterol: coprecipitation with bile salts and assimilation. Curr Microbiol 33, 187193.
11 Klaver, FA & Van Der Meer, R (1993) The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. App Environ Microbiol 59, 11201124.
12 Pereira, DI & Gibson, GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Biochem Mol Biol 37, 259281.
13 Fabian, E & Elmadfa, I (2007) The effect of daily consumption of probiotic and conventional yoghurt on oxidant and anti-oxidant parameters in plasma of young healthy women. Int J Vitam Nutr Res 77, 7988.
14 Kiessling, G, Schneider, J & Jahreis, G (2002) Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr 56, 843849.
15 Gilliland, SE & Walker, DK (1989) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesteremic effect in humans. J Dairy Sci 73, 905911.
16 Lin, SY, Ayres, JW, Winkler, W, et al. (1989) Lactobacillus effects on cholesterol: in vitro and in vivo results. J Dairy Res 72, 28852889.
17 Anderson, JW & Gilliland, SE (1999) Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr 18, 4350.
18 Xiao, JZ, Kondo, S, Takahashi, N, et al. (2003) Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 86, 24522461.
19 Hilvak, P, Odraska, J, Ferencik, M, et al. (2005) One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy 106, 5672.
20 Greany, KA, Bonorden, MJL, Hamilton-Reeves, JM, et al. (2008) Probiotic capsules do not lower plasma lipids in young women and men. Eur J Clin Nutr 62, 232237.
21 Ghafarpour, M, Houshiar-rad, A & Kianfar, H (1999) The Manual for Household Measures Cooking Yield Factors and Edible Portion of Foods. Tehran: Nashre Olume Keshavarzy.
22 Artiss, JD & Zak, B (1997) Measurement of cholesterol concentration. In Laboratory Measurement of Lipids Lipoproteins and Apolipoproteins, 3rd ed., pp. 99114 [Rifai, N and Warnick, GR, editors]. Washington, DC: AACC Press.
23 Cole, TG, Klotzsch, SG & McNamara, J (1997) Measurement of triglyceride concentration. In Handbook of Lipoprotein Testing, pp. 115126 [Rifai, N, Warnick, GR and Dominiczak, MH, editors]. Washington, DC: AACC Press.
24 Rifai, N, Bachorik, PS & Alberts, JJ (1999) Lipids, lipoproteins, and apolipoproteins. In Tietz Textbook of Clinical Chemistry, 3rd ed., pp. 809861 [Burtis, CA and Ashwood, ER, editors]. Philadelphia, PA: Saunders.
25 Hepner, G, Fried, R, St Jeor, S, et al. (1979) Hypocholesterolemic effect of yogurt and milk. Am J Clin Nutr 32, 1924.
26 Harrison, VC & Peat, G (1975) Serum cholesterol and bowel flora in newborn. Am J Clin Nutr 28, 13511355.
27 Schaafsma, G, Meuling, WJA & Bouley, C (1998) Effects of milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur J Clin Nutr 52, 436440.
28 Agerbaek, M, Gerdes, LU & Richelsen, B (1995) Hypocholesterolemic effect of a new fermented milk product in healthy middle-aged men. Eur J Clin Nutr 49, 346352.
29 Richelsen, B, Kristensen, K & Pedersen, SB (1996) Long-term (6 months) effect of a new fermented milk product on the level of plasma lipoproteins – a placebo-controlled and double blind study. Eur J Clin Nutr 50, 811813.
30 Imaizumi, K, Tominaga, A, Sato, M, et al. (1992) Effects of dietary sphingolipids on the levels of serum and liver lipids in rats. Nutr Res 12, 543548.
31 Kobayashi, T, Shimizugawa, T, Osakabe, T, et al. (1997) A long-term feeding of sphingolipids affected the levels of plasma cholesterol and hepatic triacylglycerol but not tissue phospholipids and sphingolipids. Nutr Res 17, 111114.
32 Vesper, H, Schmelz, EM, Nikolova-Karakashian, MN, et al. (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129, 12391250.
33 Smedman, AE, Gustafsson, IB, Berglund, LG, et al. (1999) Pentadecanoic acid in serum as a marker for intake of milk fat and metabolic risk factors. Am J Clin Nutr 69, 2229.
34 Samuelson, G, Bratteby, LE, Mohsen, R, et al. (2001) Dietary fat intake in healthy adolescents: inverse relationships between the estimated intake of saturated fatty acids and serum cholesterol. Br J Nutr 85, 333341.
35 Mensink, RP, Zock, PL, Kester, AD, et al. (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77, 11461155.
36 Temme, EHM, Mensink, RP & Hornstra, G (1996) Comparison of the effects of diets enriched in lauric, palmitic or oliec acids on serum lipids and lipoproteins in healthy men and women. Am J Clin Nutr 63, 897903.
37 Lewis, SJ & Burmeister, S (2005) A double-blind placebo-controlled study of the effects of Lactobacillus acidophilus on plasma lipids. Eur J Clin Nutr 59, 776780.
38 De Boever, P & Verstraete, W (1999) Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J Appl Microbiol 87, 345352.
39 Ahn, YT, Kim, GB, Lim, KS, et al. (2003) Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int Dairy J 13, 303311.
40 Doncheva, NI, Antov, GP, Softova, EB, et al. (2002) Experimental and clinical study on the hypolipidemic and antisclerotic effect of Lactobacillus bulgaricus strain GB N 1 (48). Nutr Res 22, 393403.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed