Skip to main content
×
×
Home

Effects of SCFA on the DNA methylation pattern of adiponectin and resistin in high-fat-diet-induced obese male mice

  • Yuanyuan Lu (a1) (a2), Chaonan Fan (a1), Aimin Liang (a2), Xiuqin Fan (a1), Rui Wang (a1), Ping Li (a1) and Kemin Qi (a1)...
Abstract

Specific adipokines, such as adiponectin and resistin, are secreted from adipose tissue and are associated with the development of obesity. Supplementation of dietary SCFA can prevent and reverse high-fat-diet (HFD)-induced obesity. However, it is not clear whether SCFA ameliorate abnormal expression of adiponectin and resistin in the obese state. The aim of this study was to investigate the effects of SCFA on adiponectin and resistin’s expressions in diet-induced obese mice, as well as the potential mechanisms associated with DNA methylation. C57BL/6J male mice were fed for 16 weeks with five types of HFD (34·9 % fat by wt., 60 % kJ) – a control HFD and four HFD with acetate (HFD-A), propionate (HFD-P), butyrate (HFD-B) and their admixture (HFD-SCFA). Meanwhile, a low-fat diet (4·3 % fat by wt., 10 % kJ) was used as the control group. The reduced mRNA levels of adiponectin and resistin in the adipose tissue of the HFD-fed mice were significantly reversed by dietary supplementation of acetate, propionate, butyrate or their admixture to the HFD. Moreover, the expressional changes of adiponectin and resistin induced by SCFA were associated with alterations in DNA methylation at their promoters, which was mediated by reducing the expressions of enzyme-catalysed DNA methyltransferase (DNMT1, 3a, 3b) and the methyl-CpG-binding domain protein 2 (MBD2) and suppressing the binding of these enzymes to the promoters of adiponectin and resistin. Our results indicate that SCFA may correct aberrant expressions of adiponectin and resistin in obesity by epigenetic regulation.

Copyright
Corresponding author
* Corresponding author: K. Qi, fax +86 10 59718700, email qikemin@bch.com.cn
Footnotes
Hide All

These authors contributed equally to this work.

Footnotes
References
Hide All
1. Kondo, T, Kishi, M, Fushimi, T, et al. (2009) Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem 73, 18371843.
2. Chambers, ES, Viardot, A, Psichas, A, et al. (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 17441754.
3. den Besten, G, Bleeker, A, Gerding, A, et al. (2015) Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 23982408.
4. Kasubuchi, M, Hasegawa, S, Hiramatsu, T, et al. (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7, 28392849.
5. Meyre, D, Froguel, P, Horber, FF, et al. (2014) Comment on: Valette et al. Melanocortin-4 receptor mutations and polymorphisms do not affect weight loss after bariatric surgery. PLOS ONE 2012; 7(11):E48221. PLOS ONE 9, e93324.
6. Lu, Y, Fan, C, Li, P, et al. (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep 6, 37589.
7. Kimura, I, Inoue, D, Maeda, T, et al. (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108, 80308035.
8. Leal Vde, O & Mafra, D (2013) Adipokines in obesity. Clin Chim Acta 419, 8794.
9. Vendrell, J, Broch, M, Vilarrasa, N, et al. (2004) Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res 12, 962971.
10. Roumaud, P & Martin, LJ (2015) Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity. Horm Mol Biol Clin Investig 24, 2545.
11. Bełtowski, J (2003) Adiponectin and resistin--new hormones of white adipose tissue. Med Sci Monit 9, RA55RA61.
12. Milagro, FI, Mansego, ML, De Miguel, C, et al. (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34, 782812.
13. De Carvalho, DD, You, JS & Jones, PA (2010) DNA methylation and cellular reprogramming. Trends Cell Biol 20, 609617.
14. Richmond, RC, Timpson, NJ & Sørensen, TI (2015) Exploring possible epigenetic mediation of early-life environmental exposures on adiposity and obesity development. Int J Epidemiol 44, 11911198.
15. Shen, W, Wang, C, Xia, L, et al. (2014) Epigenetic modification of the leptin promoter in diet-induced obese mice and the effects of N-3 polyunsaturated fatty acids. Sci Rep 4, 5282.
16. Greenhill, C (2015) Epigenetics: obesity-induced hypermethylation of adiponectin gene. Nat Rev Endocrinol 11, 504.
17. Burdge, GC & Lillycrop, KA (2010) Bridging the gap between epigenetics research and nutritional public health interventions. Genome Med 2, 80.
18. Lavebratt, C, Almgren, M & Ekström, TJ (2012) Epigenetic regulation in obesity. Int J Obes (Lond) 36, 757765.
19. Waldecker, M, Kautenburger, T, Daumann, H, et al. (2008) Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 19, 587593.
20. Spurling, CC, Suhl, JA, Boucher, N, et al. (2008) The short chain fatty acid butyrate induces promoter demethylation and reactivation of RARbeta2 in colon cancer cells. Nutrition and cancer 60, 692702.
21. Hariri, N & Thibault, L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23, 270299.
22. Kuryszko, J, Sławuta, P & Sapikowski, G (2016) Secretory function of adipose tissue. Pol J Vet Sci 19, 441446.
23. Ribot, J, Rodríguez, AM, Rodríguez, E, et al. (2008) Adiponectin and resistin response in the onset of obesity in male and female rats. Obesity (Silver Spring) 16, 723730.
24. Antuna-Puente, B, Feve, B, Fellahi, S, et al. (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 34, 211.
25. Oliveira, Md, de Síbio, MT, Olimpio, RM, et al. (2015) Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes. Einstein (Sao Paulo) 13, 7278.
26. Way, JM, Görgün, CZ, Tong, Q, et al. (2001) Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 276, 2565125653.
27. Stelmanska, E, Kmiec, Z & Swierczynski, J (2012) The gender- and fat depot-specific regulation of leptin, resistin and adiponectin genes expression by progesterone in rat. J Steroid Biochem Mol Biol 132, 160167.
28. Hong, J, Jia, Y, Pan, S, et al. (2016) Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 7, 5607156082.
29. Blackledge, NP & Klose, R (2011) CpG island chromatin: a platform for gene regulation. Epigenetics 6, 147152.
30. Vickers, MH (2014) Early life nutrition, epigenetics and programming of later life disease. Nutrients 6, 21652178.
31. Weber, M & Schübeler, D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19, 273280.
32. Kim, AY, Park, YJ, Pan, X, et al. (2015) Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun 6, 7585.
33. Ehrlich, S, Weiss, D, Burghardt, R, et al. (2010) Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa. J Psychiatr Res 44, 827833.
34. Houde, AA, Légaré, C, Hould, FS, et al. (2014) Cross-tissue comparisons of leptin and adiponectin: DNA methylation profiles. Adipocyte 3, 132140.
35. Nowacka-Woszuk, J, Pruszynska-Oszmalek, E, Szydlowski, M, et al. (2015) Diet-induced variability of the resistin gene (Retn) transcript level and methylation profile in rats. BMC Genet 16, 113.
36. Nishiyama, A, Yamaguchi, L & Nakanishi, M (2016) Regulation of maintenance DNA methylation via histone ubiquitylation. J Biochem 159, 915.
37. Puddu, A, Sanguineti, R, Montecucco, F, et al. (2014) Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm 2014, 162021.
38. Das, B, Dobrowolski, C, Shahir, AM, et al. (2015) Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications. Virology 474, 6581.
39. Benjamin, D & Jost, JP (2001) Reversal of methylation-mediated repression with short-chain fatty acids: evidence for an additional mechanism to histone deacetylation. Nucleic Acids Res 29, 36033610.
40. Potter, C, McKay, J, Groom, A, et al. (2013) Influence of DNMT genotype on global and site specific DNA methylation patterns in neonates and pregnant women. PLOS ONE 8, e76506.
41. Lund, K, Cole, JJ, VanderKraats, ND, et al. (2014) DNMT inhibitors reverse a specific signature of aberrant promoter DNA methylation and associated gene silencing in AML. Genome Biol 15, 406.
42. Heimer, BW, Tam, BE & Sikes, HD (2015) Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis. Protein Eng Des Sel 28, 543551.
43. Renaudineau, Y & Youinou, P (2011) Epigenetics and autoimmunity, with special emphasis on methylation. Keio J Med 60, 1016.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Lu et al. supplementary material
Tables S1-S3

 Word (16 KB)
16 KB

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 180 *
Loading metrics...

* Views captured on Cambridge Core between 21st June 2018 - 18th July 2018. This data will be updated every 24 hours.