Skip to main content Accessibility help
×
×
Home

Effects of the long-term feeding of diets enriched with inorganic phosphorus on the adult feline kidney and phosphorus metabolism

  • Janet Alexander (a1), Jonathan Stockman (a1), Jujhar Atwal (a1), Richard Butterwick (a1), Alison Colyer (a1), Denise Elliott (a2), Matthew Gilham (a1), Penelope Morris (a1), Ruth Staunton (a1), Helen Renfrew (a3), Jonathan Elliott (a4) and Phillip Watson (a1)...

Abstract

Renal disease has a high incidence in cats, and some evidence implicates dietary P as well. To investigate this further, two studies in healthy adult cats were conducted. Study 1 (36 weeks) included forty-eight cats, stratified to control or test diets providing 1·2 or 4·8 g/1000 kcal (4184 kJ) P (0 or approximately 3·6 g/1000 kcal (4184 kJ) inorganic P, Ca:P 1·2, 0·6). Study 2 (29 weeks) included fifty cats, stratified to control or test diets, providing 1·3 or 3·6 g/1000 kcal (4184 kJ) P (0 or approximately 1·5 g/1000 kcal (4184 kJ) inorganic P, Ca:P 1·2, 0·9). Health markers, glomerular filtration rate (GFR) and mineral balance were measured regularly, with abdominal ultrasound. Study 1 was halted after 4 weeks as the test group GFR reduced by 0·4 (95 % CI 0·3, 0·5) ml/min per kg, and ultrasound revealed changes in renal echogenicity. In study 2, at week 28, no change in mean GFR was observed (P >0·05); however, altered renal echogenicity was detected in 36 % of test cats. In agreement with previous studies, feeding a diet with Ca:P <1·0, a high total and inorganic P inclusion resulted in loss of renal function and changes in echogenicity suggestive of renal pathology. Feeding a diet containing lower total and inorganic P with Ca:P close to 1·0 led to more subtle structural changes in a third of test cats; however, nephrolithiasis occurred in both diet groups, complicating data interpretation. We conclude that the no observed adverse effects level for total dietary P in adult cats is lower than 3·6 g/1000 kcal (4184 kJ), however the effect of inorganic P sources and Ca:P require further investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of the long-term feeding of diets enriched with inorganic phosphorus on the adult feline kidney and phosphorus metabolism
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of the long-term feeding of diets enriched with inorganic phosphorus on the adult feline kidney and phosphorus metabolism
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of the long-term feeding of diets enriched with inorganic phosphorus on the adult feline kidney and phosphorus metabolism
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

*Corresponding author: Dr J. Alexander, fax +44 1664415440, email Janet.Alexander@effem.com

References

Hide All
1. O’Brien, TD, Osborne, CA, et al. (1992) Feline renal failure: questions, answers, questions. Compend Cont Ed Pract Vet 14, 127152.
2. Elliott, D & Lefebvre, H (2006) Chronic renal disease: the importance of nutrition. In Encyclopedia of Canine Clinical Nutrition, pp. 252282 [P Pibot, editor]. Aimargues, France: Royal Canin.
3. Dibartola, SP & Willard, MD (2006) Disorders of phosphorus: hypophosphatemia and hyperphosphatemia. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 3rd ed., pp. 195209 [SP DiBartola, editor]. St Louis, MO: Elsevier Science.
4. National Research Council (US) (2006) Ad Hoc Committee on Dog and Cat Nutrition. Washington, DC: National Academies Press.
5. FEDIAF-European Pet Food Industry Federation (2016) FEDIAF Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs. Brussels.
6. Association of American Feed Control Officials (2016) American Association of Feed Control Officials Official Publication. Washington, DC: The Association of Feed Control Officials Inc.
7. Pastoor, F, Klooster, A, Mathot, J, et al. (1995) Increasing phosphorus intake reduces urinary concentrations of magnesium and calcium in adult ovariectomized cats fed purified diets. J Nutr 125, 13341341.
8. Dobenecker, B, Webel, A, Reese, S, et al. (2018) Effect of a high phosphorus diet on indicators of renal health in cats. J Feline Med Surg 20, 339343.
9. Siedler, S & Dobenecker, B (2015) Effect of different P sources in high phosphorus diets with balanced Ca/P ratio on serum PTH, P and calcium levels as well as apparent digestibility of these minerals in dogs. In Proceedings of the 19th ESVCN Congress, 17 September 2015, pp. 1719.
10. Noori, N, Sims, JJ, Kopple, JD, et al. (2010) Organic and inorganic dietary phosphorus and its management in chronic kidney disease. Iran J Kidney Dis 4, 89100.
11. Matsuzaki, H, Kikuchi, T, Kajita, Y, et al. (1999) Comparison of various phosphate salts as the dietary phosphorus source on nephrocalcinosis and kidney function in rats. J Nutr Sci Vitaminol 45, 595608.
12. Finco, D, Barsanti, J & Brown, S (1989) Influence of dietary source of phosphorus on fecal and urinary excretion of phosphorus and other minerals by male cats. Am J Vet Res 50, 263266.
13. Gutiérrez, OM (2013) Sodium- and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease. Adv Chronic Kidney Dis 20, 150156.
14. Marks, J, Lee, GJ, Nadaraja, SP, et al. (2015) Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiol Rep 3, e12281.
15. Davies, M, Alborough, R, Jones, L, et al. (2017) Mineral analysis of complete dog and cat foods in the UK and compliance with European guidelines. Sci Rep 7, 17107.
16. German, AJ, Holden, SL, Moxham, GL, et al. (2006) A simple, reliable tool for owners to assess the body condition of their dog or cat. J Nutr 136, 2031S2033S.
17. Rokey, GJ (1994) Petfood and fishfood extrusion. In The Technology of Extrusion Cooking, pp. 144189 [ND Frame, editor]. New York: Chapman & Hall.
18. European Union (2009) Official Journal of the European Union, Regulation (EC) N ° 152 / (2009) of the commission of 27/01/2009. In Regulation (EC) No. 152, vol. 152. Brussels: European Union.
19. Robertson, WG, Jones, JS, Heaton, MA, et al. (2002) Predicting the crystallization potential of urine from cats and dogs with respect to calcium oxalate and magnesium ammonium phosphate (struvite). J Nutr 132, 1637S1641S.
20. Geddes, R, Finch, N, Elliott, J, et al. (2013) Fibroblast growth factor 23 in feline chronic kidney disease. J Vet Intern Med 27, 234241.
21. Williams, T, Elliott, J & Syme, H (2012) Calcium and phosphate homeostasis in hyperthyroid cats–associations with development of azotaemia and survival time. J Small Anim Pract 53, 561571.
22. Aronov, PA, Hall, LM, Dettmer, K, et al. (2008) Metabolic profiling of major vitamin D metabolites using Diels–Alder derivatization and ultra-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 391, 19171930.
23. Finch, NC, Syme, HM, Elliott, J, et al. (2011) Glomerular filtration rate estimation by use of a correction formula for slope–intercept plasma iohexol clearance in cats. Am J Vet Res 72, 16521659.
24. Von Kossa, J (1901) Uber die im Organismus kunztlich erzeugen Verkalkungen (About calcifications that are artificially produced in the organism). Beitr Anat 29, 163.
25. Team RC (2017) R: A Language and Environment for Statistical Computing, Google Scholar.
26. Bates, D, Maechler, M, Bolker, B, et al. (2014) lme4: Linear Mixed-effects Models Using Eigen and S4. https://cran.r-project.org/web/packages/lme4/index.html
27. Hothorn, T, Bretz, F & Westfall, P (2008) Simultaneous inference in general parametric models. Biom J 50, 346363.
28. Wickham, H (2009) ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag.
29. Braun, J-P & Lefebvre, H (2008) Kidney function and damage. Clin Biochem Domest Anim 6, 485528.
30. Monaghan, K, Nolan, B & Labato, M (2012) Feline acute kidney injury: 1. Pathophysiology, etiology and etiology-specific management considerations. J Feline Med Surg 14, 775784.
31. Bucknell, D (2000) Feline hyperthyroidism: spectrum of clinical presentions and response to carbimazole therapy. Aust Vet J 78, 462465.
32. Pechereau, D, Martel, P & Braun, J (1997) Plasma erythropoietin concentrations in dogs and cats: reference values and changes with anaemia and/or chronic renal failure. Res Vet Sci 62, 185188.
33. Lees, GE, Brown, SA, Elliott, J, et al. (2005) Assessment and management of proteinuria in dogs and cats: 2004 ACVIM Forum Consensus Statement (small animal). J Vet Intern Med 19, 377385.
34. Barber, P & Elliott, J (1998) Feline chronic renal failure: calcium homeostasis in 80 cases diagnosed between 1992 and 1995. J Small Anim Pract 39, 108116.
35. Barber, P & Elliott, J (1996) Study of calcium homeostasis in feline hyperthyroidism. J Small Anim Pract 37, 575582.
36. Demmel, A (2011) Der Einfluss der alimentären Phosphorversorgung auf ausgewählte Nierenfunktionsparameter bei Katzen (The influence of dietary phosphorus supply on selected kidney function parameters in cats). DVM Thesis, Ludwig-Maximilians-Universität, München.
37. Reynolds, B, Chetboul, V, Nguyen, P, et al. (2013) Effects of dietary salt intake on renal function: a 2-year study in healthy aged cats. J Vet Intern Med 27, 507515.
38. Coltherd, JC, Staunton, RH, Colyer, A, et al. (2018) Not all forms of dietary phosphorus are equal: an evaluation of postprandial phosphorus concentrations in the plasma of the cat. Br J Nutr (In the Press).
39. Dobenecker, B, Webel, A, Hertel-Böhnke, P, et al. (2013) Effect of high phoshporus intake on renal parameters in cats is influences by phosphorus concentration in urine. In Waltham International Nutritional Sciences Symposium, pp. 35, Portland, OR, 2 October 2013.
40. Hertel-Böhnke, PK & Dobenecker, B (2012) A high phosphorus diet with a Ca/P ratio of 0.9/1 affects renal parameters in healthy cats. Eur Soc Vet Comp Nutr Congr 63, 6364.
41. Blaine, J, Chonchol, M & Levi, M (2014) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10, 12571272.
42. Levi, M, Kempson, S, Lötscher, M, et al. (1996) Molecular regulation of renal phosphate transport. J Membr Biol 154, 19.
43. Razzaque, MS (2009) The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5, 611619.
44. Finco, D, Brown, S, Barsanti, J, et al. (1997) Reliability of using random urine samples for “spot” determination of fractional excretion of electrolytes in cats. Am J Vet Res 58, 11841187.
45. Russo, E, Lees, G & Hightower, D (1986) Evaluation of renal function in cats, using quantitative urinalysis. Am J Vet Res 47, 13081312.
46. Lulich, J, Osborne, C, Polzin, D, et al. (1991) Urine metabolite values in fed and nonfed clinically normal beagles. Am J Vet Res 52, 15731578.
47. van den Broek, DH, Chang, YM, Elliott, J, et al. (2018) Prognostic importance of plasma total magnesium in a cohort of cats with azotemic chronic kidney disease. J Vet Intern Med 32, 13591371.
48. Rizzoli, R, Fleisch, H & Bonjour, J-P (1977) Role of 1,25-dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D supply. J Clin Invest 60, 639647.
49. Lefebvre, HP, Dossin, O, Trumel, C, et al. (2008) Fractional excretion tests: a critical review of methods and applications in domestic animals. Vet Clin Pathol 37, 420.
50. Nagode, LA, Chew, DJ & Podell, M (1996) Benefits of calcitriol therapy and serum phosphorus control in dogs and cats with chronic renal failure: both are essential to prevent or suppress toxic hyperparathyroidism. Vet Clin North Am Small Anim Pract 26, 12931330.
51. Adler, AJ, Ferran, N & Berlyne, GM (1985) Effect of inorganic phosphate on serum ionized calcium concentration in vitro: a reassessment of the “trade-off hypothesis”. Kidney Int 28, 932935.
52. Ix, JH, Anderson, CAM, Smits, G, et al. (2014) Effect of dietary phosphate intake on the circadian rhythm of serum phosphate concentrations in chronic kidney disease: a crossover study. Am J Clin Nutr 100, 13921397.
53. Lamberg-Allardt, C, Karp, H & Kemi, V (2010) Phosphorus and bone. In Nutritional Influences on Bone Health, pp. 8797 [P Burckhardt, B Dawson-Hughes and C Weaver, editors]. London: Springer-Verlag.
54. Ferrari, SL, Bonjour, J-P & Rizzoli, R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90, 15191524.
55. O’Brien, CA, Jilka, RL, Fu, Q, et al. (2005) IL-6 is not required for parathyroid hormone stimulation of RANKL expression, osteoclast formation, and bone loss in mice. Am J Physiol Endocrinol Metab 289, E784E793.
56. Bellido, T, Ali, AA, Plotkin, LI, et al. (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts; a putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278, 5025950272.
57. DiBartola, SP (2011) Fluid, Electrolyte, and Acid–Base Disorders in Small Animal Practice. St Louis, MO: Elsevier Health Sciences.
58. Gutiérrez, OM (2010) Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: updating the “trade-off” hypothesis. Clin J Am Soc Nephrol 5, 17101716.
59. Kemi, VE, Rita, HJ, Kärkkäinen, MU, et al. (2009) Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: a cross-sectional study on healthy premenopausal women. Public Health Nutr 12, 18851892.
60. Heaney, RP & Recker, RR (1982) Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. J Lab Clin Med 99, 4655.
61. Klein, L, Lafferty, FW, Pearson, OH, et al. (1964) Correlation of urinary hydroxyproline, serum alkaline phosphatase and skeletal calcium turnover. Metabolism 13, 272284.
62. Landau, D, Krymko, H, Shalev, H, et al. (2007) Transient severe metastatic calcification in acute renal failure. Pediatr Nephrol 22, 607611.
63. McLeland, SM, Lunn, KF, Duncan, CG, et al. (2014) Relationship among serum creatinine, serum gastrin, calcium–phosphorus product, and uremic gastropathy in cats with chronic kidney disease. J Vet Intern Med 28, 827837.
64. Lekcharoensuk, C, Osborne, CA, Lulich, JP, et al. (2001) Association between dietary factors and calcium oxalate and magnesium ammonium phosphate urolithiasis in cats. J Am Vet Med Assoc 219, 12281237.
65. Evason, M, Remillard, R & Bartges, J (2016) Understanding urinary relative supersaturation. Clinician’s Brief, April 2016. https://www.cliniciansbrief.com/article/understanding-urinary-relative-supersaturation
66. Lulich, J, Berent, A, Adams, L, et al. (2016) ACVIM small animal consensus recommendations on the treatment and prevention of uroliths in dogs and cats. J Vet Intern Med 30, 15641574.
67. Osborne, CA, Lulich, JP, Kruger, JM, et al. (2009) Analysis of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007: perspectives from the Minnesota Urolith Center. Vet Clin Small Anim Pract 39, 183197.
68. McKerrell, R, Blakemore, W, Heath, M, et al. (1989) Primary hyperoxaluria (l-glyceric aciduria) in the cat: a newly recognised inherited disease. Vet Rec 125, 3134.
69. Pak, CY, Poindexter, JR, Adams-Huet, B, et al. (2003) Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 115, 2632.
70. Krambeck, AE, Handa, SE, Evan, AP, et al. (2010) Brushite stone disease as a consequence of lithotripsy? Urol Res 38, 293299.
71. Evan, AP, Lingeman, JE, Coe, FL, et al. (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67, 576591.
72. Hall, JA, Yerramilli, M, Obare, E, et al. (2017) Serum concentrations of symmetric dimethylarginine and creatinine in cats with kidney stones. PLOS ONE 12, e0174854.
73. Plantinga, E, Everts, H, Kastelein, A, et al. (2005) Retrospective study of the survival of cats with acquired chronic renal insufficiency offered different commercial diets. Vet Rec 157, 185187.
74. Böswald, L, Kienzle, E & Dobenecker, B (2018) Observation about phosphorus and protein supply in cats and dogs prior to the diagnosis of chronic kidney disease. J Anim Physiol Anim Nutr 102, 3136.
75. Laflamme, DP (2001) Determining metabolizable energy content in commercial pet foods. J Anim Physiol Anim Nutr 85, 222230.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Alexander et al. supplementary material
Alexander et al. supplementary material 1

 Unknown (143 KB)
143 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed