Skip to main content
×
Home
    • Aa
    • Aa

Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men*

  • Graham C. Burdge (a1), Amanda E. Jones (a1) and Stephen A. Wootton (a1)
Abstract

The capacity for conversion of α-linolenic acid (ALNA) to n−3 long-chain polyunsaturated fatty acids was investigated in young men. Emulsified [U13C]ALNA was administered orally with a mixed meal to six subjects consuming their habitual diet. Approximately 33 % of administered [13C]ALNA was recovered as 13CO2 on breath over the first 24 h. [13C]ALNA was mobilised from enterocytes primarily as chylomicron triacylglycerol (TAG), while [13C]ALNA incorporation into plasma phosphatidylcholine (PC) occurred later, probably by the liver. The time scale of conversion of [13C]ALNA to eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) suggested that the liver was the principal site of ALNA desaturation and elongation, although there was some indication of EPA and DPA synthesis by enterocytes. [13C]EPA and [13C]DPA concentrations were greater in plasma PC than TAG, and were present in the circulation for up to 7 and 14 d, respectively. There was no apparent 13C enrichment of docosahexaenoic acid (DHA) in plasma PC, TAG or non-esterified fatty acids at any time point measured up to 21 d. This pattern of 13C n−3 fatty acid labelling suggests inhibition or restriction of DHA synthesis downstream of DPA. [13C]ALNA, [13C]EPA and [13C]DPA were incorporated into erythrocyte PC, but not phosphatidylethanolamine, suggesting uptake of intact plasma PC molecules from lipoproteins into erythrocyte membranes. Since the capacity of adult males to convert ALNA to DHA was either very low or absent, uptake of pre-formed DHA from the diet may be critical for maintaining adequate membrane DHA concentrations in these individuals.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men*
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men*
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men*
      Available formats
      ×
Copyright
Corresponding author
Corresponding author:Dr G. C. Burdge, fax +44 23 80794945, email gcb@soton.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

PA Caesar , SJ Wilson , ICS Normand & AD Postle (1988) A comparison of the specificity of phosphatidylcholine synthesis by human fetal lung maintained in either organ or organotypic culture. Biochemical Journal 253, 451457.

CP Carnielli , JDL Wattimena , IHT Luijendijk , A Boerlage , HJ Dagenhart & PJJ Sauer (1996) The very-low-birth-weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acid from linolenic and linolenic acid. Pediatric Research 40, 169174.

JK Chan , BE McDonald , JM Gerrard , VM Bruce , BJ Weaver & BJ Holub (1993) Effect of dietary α-linolenic acid and its ratio to linoleic acid on platelet and plasma fatty acids and thrombogenesis. Lipids 28, 811817.

SC Cunnane , MA Ryan , KS Craig , S Brookes , B Koletzko , H Demmelmair , J Singer & DJ Kyle (1995 b) Synthesis of linoleate and (-linolenate by chain elongation in the rat. Lipids 30, 781783.

EA Emken , RO Adolf , SM Duval & GJ Nelson (1999) Effect of dietary docosahexaenoic acid on desaturation and uptake in vivo of isotope-labeled oleic, linoleic and linolenic acids by male subjects. Lipids 34, 785798.

EA Emken , RO Adolf & RM Gully (1994) Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochimica Biophysica Acta 1213, 277288.

O Ezaki , M Takahashi , T Shigematsu , K Shimamura , J Kimura , H Ezaki & T Gotoh (1999) Long-term effects of dietary alpha-linolenic acid from perilla oil on serum fatty acid composition and on the risk factors of coronary heart disease in Japanese elderly subjects. Journal of Nutritional Science and Vitaminology (Tokyo) 45, 759772.

C Galli , CR Sirtori , C Mosconi , L Medini , G Giafranceschi , V Vaccarino & C Scolastico (1992) Prolonged retention of doubly labelled phosphatidylcholine in human plasma and erythrocytes after oral administration. Lipids 27, 1051012.

ML Garg , M Keelan , ABR Thomson & MT Clandinin (1992) Desaturation of linoleic acid in the small bowel is increased by short-term fasting and by dietary content of linoleic acid. Biochimica Biophysica Acta 1126, 1725.

AE Jones , M Stolinski , RD Smith , JL Murphy & SA Wootton (1999) Effect of fatty acid chain length and saturation on the gastrointestinal handling and metabolic disposal of dietary fatty acids in women. British Journal of Nutrition 81, 3743.

J Leyton , PJ Drury & MA Crawford (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. British Journal of Nutrition 57, 383393.

DL Luthria , S Mohammed & H Sprecher (1996) Regulation of the biosynthesis of 4,7,10,13,16,19-docosahexaenoic acid. Journal of Biological Chemistry 271, 1602016025.

TG Redgrave , DCK Roberts & CE West (1975) Separation of plasma lipoproteins by density gradient ultracentrifugation. Analytical Biochemistry 65, 4249.

N Salem , R Powlosky , B Wegher & J Hibbeln (1999) In vivo conversion of linoleic acid to arachidonic acid in human adults. Prostaglandins, Leukotrienes and Essential Fatty Acids 60, 407410.

N Salem , B Wegher , P Mena & R Uauy (1996) Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proceedings of the National Academy of Sciences USA 93, 4954.

TU Sauerwald , DL Hachey , CL Jensen , H Chen , RE Anderson & WC Heird (1997) Intermediates in endogenous synthesis of C22:6ω3 and C20:4ω6 by term and preterm infants. Pediatric Research 41, 183187.

AD Sniderman , K Cianflone , P Arner , LKM Summers & KN Frayn (1998) The adipocyte, fatty acid trapping and atherogenesis. Atheriosclerosis, Thrombosis and Vascular Biology 18, 147151.

H Sprecher (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta 1486, 219231.

M Stolinski , JL Murphy , AE Jones , AA Jackson & SA Wootton (1997) Stable-isotope method for determining the gastrointestinal handling of [1-13C]palmitic acid. Lipids 32, 337340.

HM Su , L Bernardo , M Mirmiran , XH Ma , TN Corso , PW Nathanielsz & JT Brenna (1999 a) Bioequivalence of dietary alpha-linolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons. Pediatric Research 45, 8793.

HM Su , L Bernardo , M Mirmiran , XH Ma , PW Nathanielsz & JT Brenna (1999 b) Dietary 18:3n-3 and 22:6n-3 as sources of 22:6n-3 accretion in neonatal baboon brain and associated organs. Lipids 34, S347S350.

SHF Vermunt , RP Mensink , AMG Simonis & G Hornstra (1999) Effects of age and dietary n-3 fatty acids on the metabolism of [13C]-α-linolenic acid. Lipids 34, S127 abstr.

SHF Vermunt , RP Mensink , AMG Simonis & G Hornstra (2000) Effects of dietary (-linolenic acid on the conversion and oxidation of [13C]-α-linolenic acid. Lipids 35, 137142.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 312 *
Loading metrics...

Abstract views

Total abstract views: 534 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th May 2017. This data will be updated every 24 hours.