Skip to main content Accesibility Help

Equol in milk of dairy cows is derived from forage legumes such as red clover

  • Eeva A. Mustonen (a1), Mikko Tuori (a2), Ilkka Saastamoinen (a1), Juhani Taponen (a1), Kristiina Wähälä (a3), Hannu Saloniemi (a1) and Aila Vanhatalo (a2)...

The intake of isoflavones and the resulting equol contents of both plasma and milk of the same red clover-fed cows are reported for the first time in cyclic change-over design study. Cows were fed four different red clover silages and two timothy–meadow fescue silages as controls. The red clover silages contained daidzein, formononetin, biochanin A and genistein, whereas the timothy–meadow fescue silages contained no isoflavones. We found a strong association (y = 0·071x+2·75, R 2 0·71) between the formononetin intake (x) and equol concentration (y) in the plasma, while the formononetin intake and milk equol concentration were weakly associated (y = 0·0035x+0·358, R 2 0·20). This means that a small part of the total formononetin in the silage is secreted into milk as equol. The mean equol contents in plasma and milk of cows fed red clover silage diets were in the range of 4·6–8·4 mg/l and 458–643 μg/l, respectively, while the respective values for the control diets were in the range of 0·8–1·5 mg/l and 171–287 μg/l. We showed that shorter growing periods of red clover resulted in higher silage formononetin contents and plasma and milk equol contents, suggesting that the equol content of milk can be manipulated by varying the harvesting strategy of red clover. We conclude that milk equol is derived from the formononetin of red clover silage and that milk from red clover-fed cows can be considered as a source of equol in human nutrition.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Equol in milk of dairy cows is derived from forage legumes such as red clover
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Equol in milk of dairy cows is derived from forage legumes such as red clover
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Equol in milk of dairy cows is derived from forage legumes such as red clover
      Available formats
Corresponding author
*Corresponding author: Eeva A. Mustonen, fax +358 19 685 1181, email
Hide All
1 Xiao, CW (2008) Health effects of soy protein and isoflavones in humans. J Nutr 138, 1244S1249S.
2 Ma, D-F, Qin, L-Q, Wang, P-Y, et al. (2008) Soy isoflavone intake increases bone mineral density in the spine of menopausal women: meta-analysis of randomized controlled trials. Clin Nutr 27, 5764.
3 Taku, K, Umegaki, K, Sato, Y, et al. (2007) Soy Isoflavones lower serum total and LDL cholesterol in humans: a meta-analysid of 11 randomized controlled trials. Am J Clin Nutr 85, 11481156.
4 Setchell, K, Borriello, S, Hulme, P, et al. (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr 40, 569578.
5 Setchell, KDR, Brown, NM & Lydeking-Olsen, E (2002) The clinical importance of the metabolite equol – a clue to the effectiveness of soy and its isoflavones. J Nutr 132, 35773584.
6 Yuan, J-P, Wang, J-H & Liu, X (2007) Metabolism of dietary soy isoflanoves to equol by human intestinal microflora – implications for health. Mol Nutr Food Res 51, 765781.
7 Marrian, GF & Haslewood, GAD (1932) Equol, a new inactive phenol isolated from the ketohydroxyoestrin fraction of mares' urine. Biochem J 26, 12271232.
8 Millington, AJ, Francis, CM & McKeown, NR (1964) Wether bioassay of animal pasture legumes. II. The oestrogenic activity of nine strains of Trifolium subterraneum L. Aust J Agric Res 15, 527536.
9 Batterham, TJ, Hart, NK, Lamberton, AJ, et al. (1965) Metabolism of oestrogenic isoflavones in sheep. Nature 206, 509.
10 Shutt, DA & Braden, AWH (1968) The significance of equol in relation to the oestrogenic responses in sheep ingesting clover with a high formononetin content. Aust J Agric Res 19, 545553.
11 Shutt, DA & Cox, RI (1972) Steroid and phyto-oestrogen binding to sheep uterine receptors in vitro. J Endocrinol 52, 299310.
12 Bennetts, HW, Uuderwood, EJ & Shier, FL (1946) A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust Vet J 22, 212.
13 Axelson, M, Kirk, DN, Farrant, RD, et al. (1982) The identification of the weak oestrogen equol [7-hydroxy-3-(4′-hydroxyphenyl)chroman] in human urine. Biochem J 201, 353357.
14 Setchell, KDR, Clerici, C, Lephart, ED, et al. (2005) S-equol, a potent ligand for estrogen receptor β, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr 81, 10721079.
15 Lampe, J, Karr, S, Hutchins, A, et al. (1998) Urinary equol excretion with a soy challenge: Influence of habitual diet. Proc Soc Exp Biol Med 217, 335339.
16 Rowland, IR, Wiseman, H, Sanders, TA, et al. (2000) Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer 36, 2732.
17 Lundh, T (1995) Metabolism of estrogenic isoflavones in domestic animals. Proc Soc Exp Biol Med 208, 3339.
18 Nilsson, A, Hill, JL & Davies, HL (1967) An in vitro study of formononetin and biochanin A metabolism in rumen fluid from sheep. Biochim Biophys Acta 148, 9298.
19 Dickinson, JM, Smith, GR, Randel, RD, et al. (1988) In vitro metabolism of formononetin and biochanin a in bovine rumen fluid. J Anim Sci 66, 19691973.
20 Hoikkala, A, Mustonen, E, Saastamoinen, I, et al. (2007) High levels of equol in organic skimmed Finnish cow milk. Mol Nutr Food Res 51, 782786.
21 Mustonen, E, Jokela, T, Saastamoinen, I, et al. (2006) High serum S-equol content in red clover fed ewes: The classical endocrine disruptor is a single enantiomer. Environ Chem Lett 3, 154159.
22 Davis, AW & Hall, WB (1969) Cyclic change-over designs. Biometrika 56, 283293.
23 Vanhatalo, A, Pursiainen, P, Kuoppala, K, et al. (2008) Effects of harvest time of red clover silage on milk production and composition. In Biodiversity and Animal Feed Future Challenges for Grassland Production. Grassland Science in Europe, vol. 13, pp. 391393 [Hopkins, A, Gustafsson, J, Bertilsson, J, Dahlin, G, Nilsdotter-Linde, N and Spörndly, E, editors]. Uppsala: SLU Repro.
24 Sarelli, L, Tuori, M, Saastamoinen, I, et al. (2003) Phytoestrogen content of birdsfoot trefoil and red clover: effects of growth stage and ensiling method. Acta Agric Scand Anim Sci 53, 5863.
25 Littell, RC, Henry, PR & Ammerman, CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76, 12161231.
26 Steinshamn, H, Purup, S, Thuen, E, et al. (2008) Effects of clover-grass silages and concentrate supplementation on the content of phytoestrogens in dairy cow milk. J Dairy Sci 91, 27152725.
27 King, RA, Mano, MM & Head, RJ (1998) Assessment of isoflavonoid concentrations in Australian bovine milk samples. J Dairy Res 65, 479489.
28 Antignac, JP, Cariou, R, Le Bizec, B, et al. (2003) Identification of phytoestrogens in bovine milk using liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 17, 12561264.
29 Antignac, J, Cariou, R, Bizec, BL, et al. (2004) New data regarding phytoestrogens content in bovine milk. Food Chem 87, 7581.
30 Purup, S, Hansen-Møller, J, Sejrsen, K, et al. (2005) Increased phytoestrogen content in organic milk and the biological importance. DARCOFenews.
31 Braden, AWH, Thain, RI & Shutt, DA (1971) Comparison of plasma phyto-oestrogen levels in sheep and cattle after feeding on fresh clover. Aust J Agric Res 22, 663670.
32 Lundh, TJ, Pettersson, HI & Martinsson, KA (1990) Comparative levels of free and conjugated plant estrogens in blood plasma of sheep and cattle fed estrogenic silage. J Agric Food Chem 38, 15301534.
33 Lundh, TJ, Pettersson, HI & Kiessling, K-H (1988) Liquid chromatographic determination of the estrogens daidezein, formononetin, coumestrol, and equol in bovine blood plasma and urine. J Assoc Off Anal Chem 71, 938941.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed